The role of score and information bias in panel data likelihoods

Martin Schumann, Thomas A. Severini, Gautam Tripathi*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

27 Downloads (Pure)

Abstract

We show why reducing information bias can improve the performance of likelihood based estimators and confidence regions in small samples, and why it seems to matter more for inference than for estimation. The insights in this paper are helpful in explaining several simulation findings in the panel data literature. E.g., we can explain the well documented phenomenon that reducing the score bias alone often reduces the finite sample variance of estimators and improves the coverage of confidence regions in small samples, and why confidence regions based on conditional (on sufficient statistics) likelihoods can have excellent coverage even in very short panels. We can also explain the simulation results in Schumann, Severini, and Tripathi (2021), who find that, in short panels, estimators and confidence regions based on pseudolikelihoods that are simultaneously first-order score and information unbiased perform much better than those based on pseudolikelihoods that are only first-order score unbiased.& COPY; 2022 Elsevier B.V. All rights reserved.
Original languageEnglish
Pages (from-to)1215-1238
Number of pages24
JournalJournal of Econometrics
Volume235
Issue number2
DOIs
Publication statusPublished - 1 Aug 2023

JEL classifications

  • c23 - "Single Equation Models; Single Variables: Models with Panel Data; Longitudinal Data; Spatial Time Series"

Keywords

  • Fixed effects
  • Hessian bias
  • Information bias
  • Panel data likelihood
  • Score bias
  • MODELS
  • ADJUSTMENT
  • PARAMETERS
  • REDUCTION
  • INFERENCE

Fingerprint

Dive into the research topics of 'The role of score and information bias in panel data likelihoods'. Together they form a unique fingerprint.

Cite this