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a b s t r a c t

We show why reducing information bias can improve the performance of likelihood
based estimators and confidence regions in small samples, and why it seems to matter
more for inference than for estimation. The insights in this paper are helpful in
explaining several simulation findings in the panel data literature. E.g., we can explain
the well documented phenomenon that reducing the score bias alone often reduces the
finite sample variance of estimators and improves the coverage of confidence regions in
small samples, and why confidence regions based on conditional (on sufficient statistics)
likelihoods can have excellent coverage even in very short panels. We can also explain
the simulation results in Schumann, Severini, and Tripathi (2021), who find that, in
short panels, estimators and confidence regions based on pseudolikelihoods that are
simultaneously first-order score and information unbiased perform much better than
those based on pseudolikelihoods that are only first-order score unbiased.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Let θ denote a (column) vector of parameters of interest. In order to do likelihood based inference for θ in the presence
f nuisance parameters, the typical first step is to eliminate the latter from the joint likelihood of θ and the nuisance

parameters. This leads to a ‘‘pseudolikelihood’’ of θ ,1 which can be used to estimate θ and do inference based on the
likelihood ratio statistic. Since nuisance parameters can be eliminated in at least three different ways, e.g., by profiling
them out, by conditioning on sufficient statistics, or by integrating them out, how well a resulting pseudolikelihood of
θ performs in practice depends on how good an approximation it is to a benchmark likelihood of θ . The benchmark
likelihood, which we call the ‘‘target’’ likelihood, is a genuine oracle, i.e., infeasible, likelihood of θ .

The usual approach to determine whether a pseudolikelihood behaves like the target likelihood is to check if it satisfies
the 1st Bartlett identity (‘‘score unbiasedness’’) and the 2nd Bartlett identity (‘‘information unbiasedness’’). Since score
unbiasedness determines the consistency of likelihood estimators (McCullagh and Tibshirani, 1990, Remark 2, p. 329),
the literature has focused a lot of attention on constructing pseudolikelihoods possessing score bias of smaller order.
These include, e.g., marginal and conditional likelihoods (Kalbfleisch and Sprott, 1970, 1973; Chamberlain, 1980), the
modified profile likelihood (Barndorff-Nielsen, 1983), the Cox–Reid approximate conditional likelihood (Cox and Reid,
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E-mail addresses: m.schumann@maastrichtuniversity.nl (M. Schumann), severini@northwestern.edu (T.A. Severini), gautam.tripathi@uni.lu

(G. Tripathi).
1 A pseudolikelihood of θ is a nonnegative random function of θ that does not satisfy at least one of the Bartlett identities. In contrast, a ‘‘genuine’’

likelihood of θ is a nonnegative random function of θ that satisfies all of the Bartlett identities. Cf. Severini (2000, Section 3.5.2) for more on the
Bartlett identities.
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1987), score-bias-corrected profile likelihoods (McCullagh and Tibshirani, 1990; Arellano and Hahn, 2016), and integrated
likelihoods (Kalbfleisch and Sprott, 1970; Berger et al., 1999; Lancaster, 2002; Arellano and Bonhomme, 2009). Cf. Severini
(2000) and Arellano and Hahn (2007) for additional references.

In contrast, although it is reasonable to believe that likelihood-based methods should lead to even better inference
hen the information bias is also of smaller order – because when the score and information bias are both small, the
seudolikelihood should, at least in an intuitive sense, be closer to the target likelihood – the existing literature is not very
recise about why reducing information bias can lead to improved inference in small samples. For instance, the earliest
eference to the potential advantage of reducing information bias that we are aware of is McCullagh and Tibshirani (1990,
ection 6). However, as they note explicitly on p. 326 of their paper, they have ‘‘. . .no strong argument to support this
laim’’. In other works, this can be inferred from what is not said. E.g., the well-known DiCiccio et al. (1996) paper on
educing information bias never actually states why it should be reduced. Severini (1998, Section 4) considers information
ias for pseudolikelihoods, again without explicitly saying why having no information bias is beneficial. Mykland (1999,
ection 3) shows that there is some advantage to having bounded information bias, but he does not show any benefit to
educing the information bias further.

One reason why the aforementioned papers find it difficult to connect information bias reduction with inference may
e that they restrict their attention to settings, e.g., pure cross-sectional likelihoods based on a large sample and a fixed
umber of parameters, where the source of randomness comes from a single index. The lack of variability along a second
imension means that in single index asymptotic expansions where the terms due to information bias appear, there tend
o be a number of other components of the same order and, hence, simply reducing information bias does not reduce the
rder of the terms. In contrast, as we do in this paper, in a panel data setting where the number of individuals (n) and
he length of the panel (T ) are both allowed to grow, the presence of a second dimension can be exploited to characterize
he effect of reducing information bias on statistical inference. We focus on short panels, relevant for microeconometric
pplications, where both n, T → ∞ such that n grows as least as fast as T .
The idea that simultaneously reducing the score and information bias of panel data pseudolikelihoods can lead to

etter estimation and inference in small samples is supported by the simulation evidence in Schumann et al. (2021),
enceforth referred to as SST. In the current paper, we provide a theoretical argument to show why this improved
erformance can be attributed to first-order score and information unbiasedness. Earlier works in the panel data literature
hat report improved inference for modified likelihood ratios do not investigate the source of the improvements. To
he best of our knowledge, our paper is the first to make explicit the connection between the bias of the likelihood
atio and the score and information bias of the pseudolikelihood by showing that the improvement in the bias of the
ikelihood ratio resulting from reducing the score bias of the pseudolikelihood alone comes exclusively from changing an
p(n/T ) term in its approximation to an Op(n/T 3) term, and that the improvement from reducing the information bias of
he pseudolikelihood alone comes from reducing an Op(1/T ) term to an Op(1/T 2) term (Lemma 6.1 and its discussion).
urthermore, as discussed after Lemma 6.2, we show how it – together with the concept of ‘‘hessian bias’’ introduced in
ection 6.2 – can be used to explain why information bias seems to matter more for inference than estimation, and why
educing the pseudolikelihood score bias alone often reduces the variance of the resulting estimator and improves the
overage of likelihood ratio confidence regions in small samples. By connecting the target and conditional (on sufficient
tatistics) likelihoods (Section 5), we demonstrate that the results in Lemmas 6.1 and 6.2 also apply to conditional
ikelihoods.

The rest of the paper is organized as follows. Section 2 introduces the model, namely, a panel data likelihood with
ixed effects, Section 3 defines the concepts of first-order score and information unbiasedness, and a generic panel
ata pseudolikelihood is described in Section 4. The target and conditional panel data likelihoods are discussed in
ection 5. Section 6, which contains the main results of this paper, shows how the score, information, and hessian
ias of a pseudolikelihood affects estimation and inference. Section 7 summarizes the relevance of our results for
pplied econometric practice, provides some motivation behind the proof of Lemma 6.1, and discusses its extension to
onlinear dynamic models. Section 8 concludes. The assumptions needed to derive the results, and their discussion, are
n Appendix A. The {score, information, hessian}-bias of the pseudolikelihoods in the Neyman–Scott model are examined
n Appendix B, and the proof of Lemma 6.1 is outlined in Appendix C. Lemma A.1, which suggests why Lemma 6.1 also
olds for nonlinear dynamic AR(p) panel data models, is proved in Appendix D. Proofs of the remaining results are in
ppendices E–H, available as supplementary material for this paper.

. A panel data likelihood with fixed effects

Let Yit denote outcomes and Xit a (column) vector of explanatory variables for i = 1, . . . , n and t = 1, . . . , T , where
, T ≥ 2. The random variables Yit and Xit are observed, with i indexing the individual and t the time. The time-
nvariant fixed effect, denoted by αi0, is an individual specific unobserved random variable whose distribution has known
upport supp(αi0) ⊂ R, but is otherwise unknown. Let YiT := (Yi1, . . . , YiT ) denote the time-series of outcomes, and
iT := (Xi1, . . . , XiT ) the time-series of explanatory variables, corresponding to the ith individual for the length of the
anel.
The joint distribution of (XiT , αi0) is unknown, which allows for arbitrary correlation between the explanatory variables

and the fixed effect. Given (X , α ), the time-series Y is drawn from the conditional density f , which is known
iT i0 iT YiT |XiT ,αi0;θ0
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up to a parameter θ0 ∈ int(Θ), where Θ is a known convex subset of Rdim(θ0) with nonempty interior. It is assumed that,
for each (θ, αi) ∈ Θ × supp(αi0), fYiT |XiT ,αi;θ is a density with respect to an appropriate dominating measure (Lebesgue,
counting, or a mixture of both).

Since αi0 is an unobserved random variable, we can talk about the likelihood of a potential realization. Specifically, if
θ ∈ Θ and αi ∈ supp(αi0) denotes a possible value taken by αi0, then we define the joint likelihood of (θ, αi) for the ith
individual to be LiT (θ, αi) := L(θ, αi; YiT ,XiT ) := fYiT |XiT ,αi;θ (YiT ). The average loglikelihood for the ith individual is denoted
by ℓiT (θ, αi) := T−1 log LiT (θ, αi). We refer to θ as the parameter of interest, and call αi an individual specific nuisance
arameter.
The joint loglikelihood (θ, αi) ↦→ ℓiT (θ, αi) is assumed to be sufficiently well-behaved so that derivatives with respect

to (θ, αi), as many as needed, can be interchanged with integrals respect to fYiT |XiT ,αi;θ , and the mixed partial derivatives
re equal. The score with respect to αi is ℓiTα(θ, αi) := ∂αℓiT (θ, αi), and ℓiTαα(θ, αi) := ∂2

αℓiT (θ, αi).

. Score and information bias of a panel data pseudolikelihood

Let PiT (θ ) denote a pseudolikelihood of θ for individual i after αi has been eliminated from the joint likelihood
iT (θ, αi) by using one of the methods described in the introduction.2 The average pseudologlikelihood for the ith
ndividual is piT (θ ) := T−1 log PiT (θ ). The average pseudologlikelihood for the entire sample of individuals, denoted by
·T (θ ) := n−1 ∑n

i=1 piT (θ ), can then be used to estimate θ and do inference. Specifically, the estimator of θ obtained by
aximizing p·T is given by θ̂p := argmaxθ∈Θ p·T (θ ) (the dependence of θ̂p on n, T is suppressed to keep the notation
imple), and the likelihood ratio of p, as a function of θ , is defined to be LRp

nT (θ ) := 2nT [p·T (θ̂p) − p·T (θ )].
Assume that θ̂p is consistent for θ0 as n, T → ∞, i.e., θ̂p converges in probability to θ0 as n, T → ∞. However, depending

on the pseudolikelihood, e.g., the profile likelihood, the distribution of θ̂p may be asymptotically biased in the sense that
the limiting distribution of

√
nT (θ̂p − θ0) may not be centered at zero as n, T → ∞. If p is such that the distribution of θ̂p

s asymptotically unbiased, then the likelihood ratio of p evaluated at θ0, i.e., LR
p
nT (θ0), is distributed as a χ2

dim(θ0)
random

ariable as n, T → ∞. This result can be used to test hypotheses and construct confidence regions for θ0. E.g., it can be
sed to show that the lower-level random set {θ ∈ Θ : LRp

nT (θ ) ≤ kτ }, where τ ∈ (0, 1) and kτ denotes the 1− τ quantile
f a χ2

dim(θ0)
random variable, is a confidence region for θ0 whose coverage probability approaches 1 − τ as n, T → ∞.

owever, if the distribution of θ̂p is asymptotically biased, then the limiting distribution of LRp
nT (θ0) is no longer χ2

dim(θ0)
nd, consequently, the likelihood ratio confidence region has poor empirical coverage even in large samples.

.1. Score bias

A pseudolikelihood for individual i is said to be score unbiased, i.e., satisfy the 1st Bartlett identity, if E0∇θpiT (θ0) = 0.
ere, ∇θ := (∂θ )′ is the gradient, ‘‘′’’ the transpose operator, and – since piT may depend on a preliminary estimator – E0

enotes expectation with respect to pdfY1T ,...,YnT |X1T ,α10,...,XnT ,αn0

Ass. A.1(i)
=

∏n
i=1 fYiT |XiT ,αi0;θ0 , the joint density of outcomes,

iven all the explanatory variables, for the entire sample of individuals.3 Score unbiasedness generally does not hold for
anel data pseudolikelihoods. Indeed, it is well known that eliminating the individual specific nuisance parameter from a
anel data likelihood creates a bias, due to which it is typically the case that E0∇θpiT (θ0) = Op(T−1) as T → ∞. Since it is
his bias that causes the limiting (as n, T → ∞ at the same rate) distribution of

√
nT (θ̂p − θ0) to be incorrectly centered,

major focus of the literature has been to construct pseudolikelihoods for which the score bias is smaller by an order of
agnitude, which ensures that the limiting distribution of

√
nT (θ̂p − θ0) is correctly centered when n grows at least as

fast as T , but not too fast, e.g., n/T 3
→ 0. Consequently, if a pseudologlikelihood piT satisfies the condition

E0∇θpiT (θ0) = Op(T−2) as T → ∞, (3.1)

then piT is said to be ‘‘first-order score unbiased’’ (FOSU).4 The left-hand side of (3.1), i.e., E0∇θpiT (θ0), is called the ‘‘score
bias’’ of the pseudologlikelihood piT .

2 Specific panel data pseudolikelihoods considered in this paper include the profile likelihood (Section 4), the conditional likelihood (Remark 5.1),
and the integrated likelihoods of Lancaster (2002), Arellano and Bonhomme (2009), and SST, described briefly in Appendix G. These pseudolikelihoods
have different properties because they differ in their construction. E.g., the integrated likelihoods of Arellano–Bonhomme and SST require a preliminary
estimator in their construction; namely, Arellano–Bonhomme estimate the expectations appearing in their weight-functions by using time-series
sample averages, whereas SST use the fixed effects maximum likelihood estimator (MLE) defined in Section 4 to construct their data based
transformation of the fixed effects. In contrast, the profile likelihood, the conditional likelihood, and the integrated likelihood of Lancaster do
not require preliminary estimators.
3 If the pseudolikelihood does not depend on a preliminary estimator, then, by Assumption A.1(i), E0∇θpiT (θ0) reduces to an expectation with

respect to the individual density fYiT |XiT ,αi0;θ0 . Since E0 is a conditional expectation, and var0 the conditional variance using E0 , where conditioning
s on (X1T , α10, . . . ,XnT , αn0) or (XiT , αi0) depending on the context, equalities and inequalities involving them hold with probability one (w.p.1).
his is the sense in which subsequent statements and assumptions regarding E0 and var0 should be interpreted even when the ‘‘w.p.1’’ qualifier is
issing. To avoid the proliferation of ‘‘w.p.1’’ qualifiers each time E0 or var0 is mentioned, we do not state them explicitly hereafter.
4 If A is an array, then the statement A = O (1) is understood to hold element by element.
iT iT p
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3.2. Information bias

A pseudolikelihood for individual i is said to be information unbiased, i.e., satisfy the 2nd Bartlett identity, if
TE0∇θpiT (θ0)∂θpiT (θ0) + E0∇

2
θθpiT (θ0) = 0,5 where ∇

2
ab := ∂b ◦ ∇a. Eliminating the individual specific nuisance parameter

creates a bias due to which information unbiasedness also does not hold for panel data pseudolikelihoods, and it is
typically the case that TE0∇θpiT (θ0)∂θpiT (θ0) + E0∇

2
θθpiT (θ0) = Op(T−1) as T → ∞. Therefore, if a pseudologlikelihood

iT can be constructed such that its information bias is smaller by an order of magnitude, i.e., if it satisfies the condition

TE0∇θpiT (θ0)∂θpiT (θ0) + E0∇
2
θθpiT (θ0) = Op(T−2) as T → ∞, (3.2)

hen the pseudologlikelihood piT is said to be ‘‘first-order information unbiased’’ (FOIU). The left-hand side of (3.2),
.e., TE0∇θpiT (θ0)∂θpiT (θ0) + E0∇

2
θθpiT (θ0), is called the ‘‘information bias’’ of the pseudologlikelihood piT .

We investigate three mutually exclusive types of pseudolikelihoods: Those that are neither FOSU nor FOIU; those that
are FOSU but not FOIU; those that are simultaneously FOSU and FOIU.6 The most prominent example of a pseudolikelihood
hat is neither FOSU nor FOIU is the profile likelihood. Examples of pseudolikelihoods that are FOSU, but not FOIU, are
he ‘‘information orthogonalizing transformation (IOT)’’ based integrated likelihood of Lancaster (2002), and the weighted
ntegrated likelihood of Arellano and Bonhomme (2009). An example of a pseudolikelihood that is both FOSU and FOIU is
he integrated likelihood of SST, which is based on the ‘‘zero-score-expectation (ZSE)’’ transformation of Severini (2007).
arget and conditional likelihoods, being genuine likelihoods, are also FOSU and FOIU.

. A generic panel data pseudolikelihood

The canonical example of a pseudolikelihood of θ is the profile loglikelihood ℓ
p
·T (θ ) := n−1 ∑n

i=1 ℓ
p
iT (θ ), where ℓ

p
iT (θ ) :=

iT (θ, α̂iT (θ )) is the profile loglikelihood for individual i and α̂iT (θ ) := argmaxu∈supp(αi0) ℓiT (θ, u) denotes the MLE of αi for
given θ ∈ Θ . The fixed effects MLE of θ , which maximizes the profile likelihood for the entire sample of individuals,

s denoted by θ̃ := argmaxθ∈Θ ℓ
p
·T (θ ). The profile likelihood is, in general, neither FOSU nor FOIU (DiCiccio, Martin, Stern,

nd Young, 1996, Section 3.1, p. 190).
The fact that the profile likelihood is not FOSU implies that although the fixed effects MLE is consistent as n, T → ∞,

ts distribution is asymptotically biased in the sense that if n and T grow at the same rate, then
√
nT (θ̃ − θ0) converges in

distribution to a Gaussian random vector whose mean is not zero, cf., e.g., Li et al. (2003, Section 2) and Hahn and Newey
(2004, Theorem 1). Consequently, the profile likelihood ratio LRp

nT (θ0) := 2nT [ℓ
p
·T (θ̃ )− ℓ

p
·T (θ0)] is no longer asymptotically

distributed as a χ2
dim(θ0)

random variable. It is, therefore, not surprising that in simulation studies, e.g., SST (Section 10),
the profile likelihood ratio confidence regions are found to have poor coverage in small samples.

Research efforts to solve this problem, namely, to construct a pseudologlikelihood whose maximizer has a correctly
centered limiting distribution with variance equal to that of the fixed effects MLE, have led to several competing
candidates. The distinguishing feature of these competitors is that they can all be expressed as an additive correction,
explicit or otherwise, to the profile loglikelihood. That is, each pseudologlikelihood piT in the literature that claims to
solve the problems besetting the profile loglikelihood can be written as

piT (θ ) =

{
ℓ
p
iT (θ ) + CiT (θ ) if the correction is explicit (a)

ℓ
p
iT (θ ) + CiT (θ ) + Op(T−2) if the correction is implicit, (b)

(4.1)

where CiT (θ ) is the additive correction to ℓ
p
iT (θ ). Though denoted by the same symbol, the additive corrections in 4a and 4b

can be very different. An explicit additive correction means that one is imposed definitionally, i.e., piT (θ ) := ℓ
p
iT (θ )+CiT (θ );

cf., e.g., McCullagh and Tibshirani (1990), Arellano (2003), Sartori (2003), Pace and Salvan (2006), Arellano and Hahn
(2007, 2016), Schumann (2022), and the references therein. In contrast, an implicit (or internal) additive correction
means that the definition of piT can be used to deduce the existence of a function CiT such that piT (θ ) − ℓ

p
iT (θ ) =

CiT (θ ) + Op(T−2). Examples of pseudologlikelihoods where an additive correction to the profile loglikelihood is implicit
include the integrated likelihoods of Lancaster, Arellano–Bonhomme, and SST.

Whether corrected explicitly or implicitly, most of the pseudolikelihoods proposed in the literature are only FOSU. E.g.,
SST (Section 7.5) have shown that the integrated likelihoods of Lancaster and Arellano–Bonhomme are not FOIU. Although
first-order score unbiasedness is enough to guarantee that the estimators proposed by Lancaster and Arellano–Bonhomme
are well behaved as n, T → ∞, simulation results in SST (Section 10) reveal that, in short panels: (i) The empirical
coverage of the likelihood ratio confidence regions based on pseudolikelihoods that are simultaneously FOSU and FOIU is
much higher than the empirical coverage of the likelihood ratio confidence regions based on pseudolikelihoods that are
only FOSU; (ii) Estimators obtained by maximizing pseudolikelihoods that are simultaneously FOSU and FOIU have smaller
finite sample variance than estimators obtained by maximizing pseudolikelihoods that are only FOSU. In Section 6, we
provide a theoretical argument to explain why the source of this discrepancy can be attributed to first-order information
unbiasedness.

5 The factor T before the E0∇θpiT (θ0)∂θpiT (θ0) term is not a typo. It is due to the fact that piT is defined to be the average (over T )
pseudologlikelihood for individual i.
6 Pseudolikelihoods that are FOIU but not FOSU can also exist. E.g., SST (Supplement, p. 123) have shown that the profile likelihood in the dynamic

Neyman–Scott model (a linear AR(1) panel data model with Gaussian innovations) is FOIU but not FOSU. However, as noted in Remark 6.1(i),
information bias reduction is pointless without score bias reduction. Therefore, we do not consider pseudolikelihoods that are FOIU but not FOSU.
1218
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5. The target likelihood

Following Pace and Salvan (2006, Section 3.2), the target loglikelihood of θ for the ith individual is ℓiT (θ ) :=

ℓiT (θ, α∗

iT (θ )), where α∗

iT (θ ) := argmaxu∈supp(αi0) E0ℓiT (θ, u) is the ‘‘population level’’ MLE of αi for a given θ . The
verage target loglikelihood for the entire sample of individuals, denoted by ℓ·T (θ ) := n−1 ∑n

i=1 ℓiT (θ ), is an oracle,
.e., infeasible, loglikelihood because α∗

iT is unknown for each i, T . The target likelihood is a genuine likelihood because
(θ, α∗

iT (θ ); YiT ,XiT ) := fYiT |XiT ,α∗
iT (θ );θ

(YiT ) integrates to one with respect to YiT (for each θ,XiT ) since α∗

iT (θ ) does not depend
n YiT . Consequently, the target loglikelihood ℓiT (θ ) satisfies all of the Bartlett identities. In particular, it satisfies (3.1)
nd (3.2) exactly, i.e., with the Op(T−2) terms on their right-hand side replaced by zero. Therefore, the target likelihood
erves as a natural benchmark to evaluate the performance of other pseudolikelihoods. The oracle estimator of θ0, which
aximizes the target likelihood for the entire sample of individuals, is denoted by θ̂∗

:= argmaxθ∈Θ ℓ·T (θ ), and the target
ikelihood ratio is LRtarget

nT (θ0) := 2nT [ℓ·T (θ̂∗) − ℓ·T (θ0)].

emark 5.1 (Conditional Likelihoods). In panel data models where sufficient statistics for the fixed effects exist – e.g., ex-
onential family models such as the Neyman–Scott model, panel logit, panel Poisson, and the panel negative binomial
odel – the fixed effects can be eliminated by conditioning on the sufficient statistics, which leads to a conditional

ikelihood. Maximizing the conditional likelihood yields the conditional maximum likelihood estimator (CMLE). Like the
racle estimator, cf. the discussion after Assumption A.3, the CMLE is consistent and asymptotically unbiased, i.e., its
imiting distribution is correctly centered, as n → ∞ and T is held fixed. As shown below, conditional likelihoods are
lso genuine likelihoods. Hence, suitably modifying their proofs, the results we obtain for the target likelihood can also
e shown to hold for conditional likelihoods.
To see that conditional likelihoods are genuine likelihoods, let SXiT (YiT ) be a sufficient statistic for αi. Denote by µ0

he dominating measure for fYiT |XiT ,αi;θ . By the factorization theorem for sufficient statistics (Halmos and Savage, 1949,
orollary 1), there exist functions gXiT ,θ,αi , hXiT ,θ ≥ 0 µ0-a.s. with

∫
YiT

hXiT ,θ (y)µ0(dy) < ∞ such that fYiT |XiT ,αi;θ (YiT ) =

XiT ,θ,αi (SXiT (YiT ))hXiT ,θ (YiT ) µ0-a.s. Absorbing
∫
YiT

hXiT ,θ (y)µ0(dy) in gXiT ,θ,αi , it can be assumed without loss of generality
hat hXiT ,θ is a density with respect to µ0. Therefore, as the conditional likelihood Lcond(θ; YiT ,XiT ) := 1(fYiT |XiT ,αi;θ (YiT ) >

)
fYiT |XiT ,αi;θ (YiT )

gXiT ,θ,αi (SXiT (YiT ))
= hXiT ,θ (YiT ) integrates to 1 with respect to µ0(dYiT ), it is a genuine likelihood. □

. How do the score and information bias of a panel data pseudolikelihood affect estimation and inference of the
arameter of interest?

.1. The effect of first-order score and information unbiasedness of the pseudolikelihood on the bias of the likelihood ratio

The conditional bias (given the covariates X1T , α10, . . . ,XnT , αn0) of the likelihood ratio, denoted by E0LR
p
nT (θ0) −

im(θ0), is related to the conditional coverage probability of the likelihood ratio confidence region. Specifically, the
overage probability approaches its nominal value as the expectation of the likelihood ratio gets closer to its nominal
alue.7 Therefore, we now demonstrate how the score and information bias of piT asymptotically affect E0LR

p
nT (θ0) −

im(θ0). To motivate this, we begin by looking at a famous example due to Neyman and Scott (1948).

xample 6.1 (Heterogeneous means model of Neyman–Scott). Consider a Gaussian panel data model where individual
pecific heterogeneity arises only in the mean, i.e., let Yit = αi0 + Uit , where Ui1, . . . ,UiT | αi0

d
= NIID(0, σ 2

0 ) with
upp(αi0) = R and σ 2

0 ∈ (0, ∞) =: Θ . The Neyman–Scott model has been used to explain variation in scores (Yi1, . . . , YiT )
obtained by individual i on repeated IQ tests using unobserved individual ability (αi0) as the only explanatory variable.
The parameter of interest is the variance of the IQ scores, i.e., θ := σ 2. In this example, the fixed effects MLE of θ is not
consistent for θ0 as n → ∞ and T is held fixed. Although the consistency issue can be fixed by letting T grow with n, it can
be shown (SST, Supplement, Example B.2) that the asymptotic distribution of the fixed effects MLE of σ 2 is not correctly
centered when n grows at least as fast as T . This is the classic incidental parameters problem of maximum likelihood,
first noted by Neyman and Scott (1948).

7 To get some intuition behind this phenomenon, suppose that n = 1 and there are no nuisance parameters and covariates. Let LRT := LRT (θ0)
be the likelihood ratio evaluated at θ0; its expectation µT := ELRT now only depends on T . It is known from the theory of Bartlett correction of
the likelihood ratio (Barndorff-Nielsen and Hall, 1988) that µT = dim(θ0) + O(T−1) and Pr(dim(θ0)LRT /µT ≤ u) = F (u) + O(T−2), u ∈ R, as T → ∞,
where F is the cumulative distribution function (c.d.f.) of a χ2

dim(θ0)
random variable. Hence,

Pr(LRT ≤ u) = Pr(
dim(θ0)LRT

µT
≤

dim(θ0)u
µT

) = F (
dim(θ0)u

µT
) + O(

1
T 2 ) = F (u) + O(µT − dim(θ0)) + O(

1
T 2 ).

herefore, µT − dim(θ0), the bias of the likelihood ratio, helps determine the accuracy of the χ2-approximation to the c.d.f. of the likelihood ratio.
his suggests that the same holds for panel data pseudolikelihoods as well, although it is beyond the scope of our paper to establish this result
igorously.
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The Neyman–Scott model provides a nice illustration of the effects of reducing the score and information bias of
pseudolikelihood on the bias of the likelihood ratio. To demonstrate this, we consider the likelihood ratios of three
seudolikelihoods and, for the sake of comparison, that of the target likelihood. The three pseudologlikelihoods we
onsider are the profile loglikelihood (ℓpiT ), the integrated loglikelihood of SST (ℓ̄zseiT ), and the explicitly corrected (or
djusted) pseudologlikelihood p

adj
iT (θ ) := ℓ

p
iT (θ ) + CiT (θ ) with CiT defined in (B.16).8

It is shown in Appendix B that, in the Neyman–Scott model, ℓ̄zseiT is score as well as information unbiased, padjiT is score
nbiased but not FOIU, and that ℓ

p
iT is neither FOSU nor FOIU. Motivated by the arguments in Schumann (2022), the

orrection term in p
adj
iT is chosen such that the global maximizer of padj

·T coincides with the global maximizer of ℓ̄zse
·T (cf. the

roof of (6.1)b). This ensures that any differences between the likelihood ratios of padj
·T and ℓ̄zse

·T can be attributed solely
o the differences between the pseudolikelihoods themselves and not to the estimators used to construct the likelihood
atios.9 As shown in Appendix E, the bias of the likelihood ratio in the Neyman–Scott model can be decomposed as follows
the limits in (6.1)a–(6.1)d are taken as n → ∞, T -fixed):10

E0LR
p
nT (θ0) − 1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O( 1
nT ) + 0

due to score bias

+ 0
due to info bias

if p = ℓ̄zse
·T (a)

O( 1
nT ) + 0

due to score bias

+ O(
1
T
)

due to info bias

if p = p
adj
·T (b)

O(
n
T
)

due to score bias

+ O(
1
T
)

due to info bias

if p = ℓ
p
·T (c)

O( 1
nT ) + 0

due to score bias

+ 0
due to info bias

if p = target. (d)

(6.1)

Eqs. (6.1)a and (6.1)d show that, asymptotically, the likelihood ratio of ℓ̄zse
·T has the same bias as the likelihood ratio of

the target likelihood, and the bias converges to zero as n → ∞ and T is held fixed. In contrast, (6.1)b and (6.1)c reveal that
the bias of the likelihood ratio of padj

·T converges to zero when T is allowed to grow with n, and the profile likelihood ratio
bias vanishes only if T grows faster than n, which is not the right setting for modeling short panels. For p ∈ {ℓ̄zse

·T , p
adj
·T }, the

likelihood ratio bias is smallest when p = ℓ̄zse
·T . As ℓ̄zse

·T and p
adj
·T are both score unbiased with the same global maximizer,

this can be attributed to the fact that ℓ̄zse
·T is information unbiased whereas padj

·T is not. Indeed, their proofs reveal that the
(1/T ) term in (6.1)b, which is absent in (6.1)a, arises because p

adj
·T is not FOIU. The O(n/T ) term in (6.1)c, which is due

o the fact that the profile likelihood is not FOSU, reveals that the bias of the profile likelihood ratio can be large when T
s small, even if n is large. In (6.1)d, there are no terms due to score and information bias because the target likelihood is
genuine likelihood and, hence, satisfies all of the Bartlett identities. □

The results for the Neyman–Scott model can be generalized considerably to include nonlinear panel data models. The
ollowing proposition shows that, asymptotically, the bias of the likelihood ratio of a pseudologlikelihood piT can be de-
omposed as the sum of two terms: One caused by the score bias of piT , and the other caused by the information bias of piT .

emma 6.1. Let Assumptions A.1–A.7 hold. Then, as n, T → ∞,

E0LR
p
nT (θ0) − dim(θ0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Op(
n
T 3 )  

due to score bias

+ Op(
1
T 2 )  

due to info bias

if p is FOSU and FOIU (a)

Op(
n
T 3 )  

due to score bias

+ Op(
1
T
)  

due to info bias

if p is FOSU but not FOIU (b)

Op(
n
T
)  

due to score bias

+ Op(
1
T
)  

due to info bias

if p is neither FOSU nor FOIU (c)

Op( 1
nT ) if p is the target loglikelihood. (d)

(6.2)

8 The reason we do not consider the integrated likelihoods of Lancaster and Arellano–Bonhomme is because in the Neyman–Scott model the
integrated likelihoods of Lancaster and Arellano–Bonhomme – which are identical because the parameters are orthogonal – coincide with the
integrated likelihood of SST constructed with πi := 1 (Appendix G). This is not the case in general. It happens here only because the ZSE transformation
in the Neyman–Scott model is the identity map (SST, Example 9.1).
9 In the Neyman–Scott model, the maximum integrated likelihood estimator (MILE) proposed by SST and the oracle estimator are consistent

for θ0 as n → ∞ and T is held fixed, whereas the fixed effects MLE, which maximizes the profile likelihood, is consistent for θ0 only when both
, T → ∞.
10 In the Neyman–Scott model, the only explanatory variables are the fixed effects. Therefore, E0LR

p
nT (θ0) denotes expectation with respect to

n f =
∏n pdf =

∏n ∏T pdf .
i=1 YiT |XiT ,αi0;θ0 i=1 Ui1,...,UiT |αi0 i=1 t=1 N(0,σ2
0 )
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The limits in Lemma 6.1 are taken as n, T → ∞ because estimators in nonlinear panel data models are generally
nly consistent as n, T → ∞. The results in (6.2)a–(6.2)d are qualitatively very similar to those in (6.1)a–(6.1)d, even
hough we are no longer in the Neyman–Scott setting. The terms due to the score bias depend on both n and T , whereas
he terms due to the information bias depend only on T . The Op(T−2) term appears on the right-hand side only when
he pseudolikelihood is FOIU.11 If the pseudolikelihood is not FOIU, then the Op(T−2) term becomes an Op(T−1) term.
he Op(n/T 3) term arises if the pseudolikelihood is FOSU.12 If the pseudolikelihood is not FOSU, then the Op(n/T 3) term
ecomes Op(n/T ). The Op(n/T ) term in (6.2)c does not vanish because T does not grow faster than n (Assumption A.4(i)).
his explains why the profile likelihood ratio behaves very poorly in nonlinear panel data models when T is small, even
f n happens to be large.

Lemma 6.1 can be used to justify the improvements that researchers often discover in their simulation experiments
hen they compare the coverage probability of a likelihood ratio confidence region based on a FOSU pseudolikelihood
ith one based on the profile likelihood. Indeed, the improvement in going from (6.2)c to (6.2)b is caused by the Op(n/T )
erm in (6.2)c becoming the Op(n/T 3) term in (6.2)b. Similarly, comparing the Op(1/T 2) term in (6.2)a with the Op(1/T )
erm in (6.2)b suggests that the coverage probability of a confidence region obtained by inverting the likelihood ratio of
pseudolikelihood that is both FOSU and FOIU is likely to be higher than the coverage probability of a confidence region
ased on a pseudolikelihood that is only FOSU. Therefore, it makes sense to base inference on a pseudolikelihood that is
oth FOSU and FOIU.
Since the terms due to the score bias depend on both n and T , whereas the terms due to the information bias depend

nly on T , increasing n alone affects the score bias terms but not the information bias terms. If n and T grow at the
ame rate, an assumption maintained in several papers, then Op(n/T 3) = Op(1/T 2) and the improvement to the coverage
robability in (6.2)a from first-order information unbiasedness should be comparable to the improvement from first-order
core unbiasedness. But if n grows too fast, say, n = O(T 2) (so that the Op(n/T 3) term still vanishes asymptotically), then
he Op(n/T 3) term in (6.2)a becomes Op(1/T ), and an improvement to the coverage probability from first-order information
nbiasedness is dominated by the improvement from first-order score unbiasedness. However, the simulation evidence
n SST suggests that improvements to coverage probability in finite samples exist even when n is much larger than T .
herefore, using a pseudolikelihood that is simultaneously FOSU and FOIU is always beneficial.

emark 6.1. (i) Lemma 6.1 makes it clear that there is no gain from first-order information unbiasedness without first-
rder score unbiasedness. Indeed, if p were FOIU but not FOSU, then the Op(1/T ) on the right-hand side of (6.2)c would
e replaced by an Op(1/T 2) term, i.e.,

E0LR
p
nT (θ0) − dim(θ0)

⏐⏐
p is FOIU but not FOSU = Op(

n
T
)  

due to score bias

+ Op(
1
T 2 )  

due to info bias

= Op(
n
T
).

(ii) Since conditional likelihoods are genuine likelihoods, the proof of (6.2)d can be adapted to show that it also holds
for conditional likelihoods. E.g., this is confirmed in the Neyman–Scott model, where the integrated likelihood of SST
coincides with the conditional likelihood. This explains why the likelihood ratio confidence regions based on conditional
likelihoods can have excellent coverage probabilities even in very short panels. □

Example 6.2 (Panel Poisson). Let Yit
⏐⏐XiT , αi0; θ0

d
= Poisson(eX

′
it θ0+αi0 ), so that the likelihood for the ith individual is

LiT (θ, αi) = (
∏T

t=1 Yit !)−1e−
∑T

t=1 eX
′
it θ+αi e

∑T
t=1 Yit (X ′

it θ+αi). Lancaster (2002, p. 650) showed that LiT (θ, α̂iT (θ )) ∝

pmf
YiT |XiT ,

∑T
t=1 Yit ;θ

(YiT ), i.e., the profile likelihood for individual i coincides with the conditional density of YiT given

XiT and the statistic
∑T

t=1 Yit , which is sufficient for αi. SST (Example 9.2) have shown that the same also holds
for their ZSE transformed integrated likelihood. Therefore, in the panel Poisson model, the profile likelihood, the ZSE
transformed integrated likelihood, and the conditional likelihood, all coincide and, following Remark 6.1(ii), satisfy
(6.2)d. □

6.2. The effect of first-order score and information unbiasedness on the bias and variance of θ̂p

The following result shows how p being FOSU or FOIU affects the conditional (on the covariates X1T , α10, . . . ,XnT , α1n)
bias and variance of θ̂p.

11 There is no Op(T−2) term in (6.1)a because ℓ̄zse
·T is information unbiased in Example 6.1.

12 There is no Op(n/T 3) term in (6.1)a and (6.1)b because, in Example 6.1, ℓ̄zse
·T and p

adj
·T are score unbiased. Unlike (6.1)a and (6.1)b, no Op(1/nT )

term appears in (6.2)a and (6.2)b because it is dominated by the O (n/T 3) term, cf. (C.6) in the proof of (6.2)a.
p
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Lemma 6.2. Let Assumptions A.1–A.7 hold, and n, T → ∞. Then,

E0θ̂p − θ0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Op(
1
T 2 )  

due to score bias

if p is FOSU (a)

Op(
1
T
)  

due to score bias

if p is not FOSU (b)

Op( 1
nT ) if p is the target loglikelihood. (c)

(6.3)

urthermore, if the expected hessian matrix Hp·T := n−1 ∑n
i=1 E0∇

2
θθpiT (θ0) =: n−1 ∑n

i=1 HpiT , and var0 is the variance using
E0, then

var0
√
nT (θ̂p − θ0) + H−1

p·T
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Op(
n
T 3 )  

due to score bias

+ Op(
1
T 2 )  

due to info bias

if p is FOSU and FOIU (a)

Op(
n
T 3 )  

due to score bias

+ Op(
1
T
)  

due to info bias

if p is FOSU but not FOIU (b)

Op(
n
T
)  

due to score bias

+ Op(
1
T
)  

due to info bias

if p is neither FOSU nor FOIU (c)

Op( 1
nT ) if p is the target loglikelihood. (d)

(6.4)

Lemma 6.2 reveals some interesting findings. For instance, (6.3)a and (6.3)b show that, asymptotically, the bias of θ̂p
depends only on T , and that its magnitude is determined solely by whether p is FOSU or not. In particular, p being FOIU
does not reduce the bias of θ̂p. Eq. (6.3)c shows that the bias of the oracle estimator goes to zero as n → ∞ and T is held
ixed, which is not surprising because the oracle estimator can be consistent for θ0 as n → ∞ and T is held fixed; cf. the
iscussion after Assumption A.3.
To assess the effect of first-order score and information unbiasedness of p on the variance of estimators, we rewrite

he inverse hessian matrix H−1
p·T

in (6.4)a–(6.4)d in order to facilitate their comparison for different pseudologlikelihoods.
ndeed, since the asymptotic variance of θ̂p is equal to the asymptotic variance of the oracle estimator, it is reasonable
o express −HpiT as a deviation from FiT := −HpiT

⏐⏐
p=target = −E0∇

2
θθℓiT (θ0, α

∗

iT (θ0)), the Fisher information of the target
likelihood for individual i.13 To derive an expression for HpiT in terms of its deviation from FiT , recall from Section 4 that
any panel data pseudologlikelihood piT that claims to better the profile loglikelihood can be written as

piT (θ ) = ℓ
p
iT (θ ) + CiT (θ ) + Op(T−2) as T → ∞, (6.5)

where CiT is a correction term designed to improve specific properties of the profile loglikelihood (if the correction
is explicit, then the Op(T−2) term in (6.5) is identically zero). E.g., several corrections exist that remove BiT , the term
in the profile loglikelihood responsible for its first-order score bias (cf. (6.11)). Therefore, motivated by the fact that
∇

{0,1,2}
θ BiT (θ0) = Op(T−1) (cf. the proof of (6.6)), we assume henceforth that ∇

{0,1,2}
θ CiT (θ0) = Op(T−1).

It is shown in Appendix F.3 that if E0∇
2
θ CiT (θ0) = Op(T−1), then, under time-independence and mild conditions on

some derivatives of the target loglikelihood at θ0,

− HpiT = FiT + Op(T−1)  
hessian bias

as T → ∞, (6.6)

here ‘‘hessian bias’’ refers to the approximation error when −HpiT is approximated by FiT , i.e., the hessian bias of a
seudolikelihood piT is defined to be −HpiT −FiT . Therefore, analogous to the definitions of first-order score and information
nbiasedness in (3.1) and (3.2), we call a pseudolikelihood piT to be ‘‘first-order Hessian unbiased’’ (FOHU) whenever

− HpiT = FiT + Op(T−2) as T → ∞. (6.7)

ince the target likelihood satisfies (6.7) exactly, i.e., with the Op(T−2) terms on its right-hand side replaced by zero, the
arget likelihood is, by definition, hessian unbiased.

Letting F·T := n−1 ∑n
i=1 FiT denote average Fisher information of the target likelihood for the entire sample of

ndividuals, we have −H−1
p·T

(6.6)
= F−1

·T + Op(T−1) under Assumption A.2. Hence, (6.4)a, (6.4)b, and (6.4)c imply that the

13 The Fisher information, which is usually defined as the variance of the score function, is equal to the negative of the expected Hessian because
the target likelihood satisfies the first two Bartlett identities.
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difference between var0
√
nT (θ̂p − θ0) and F−1

·T is given by

var0
√
nT (θ̂p − θ0) − F−1

·T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Op(
1
T
)  

due to hessian bias

+ Op(
n
T 3 )  

due to score bias

+ Op(
1
T 2 )  

due to info bias

if p is FOSU and FOIU (a)

Op(
1
T
)  

due to hessian bias

+ Op(
n
T 3 )  

due to score bias

+ Op(
1
T
)  

due to info bias

if p is FOSU but not FOIU (b)

Op(
1
T
)  

due to hessian bias

+ Op(
n
T
)  

due to score bias

+ Op(
1
T
)  

due to info bias

if p is neither FOSU nor FOIU. (c)

(6.8)

A well-documented phenomenon in the panel data literature — cf., e.g., the simulation results in Hahn and Newey
(2004), Fernández-Val (2009), and SST — is that in simulations of fixed effects logit and probit models, estimators that
correct the bias of the pseudolikelihood score not only perform better in terms of bias, but also have a lower finite sample
variance than the fixed effects MLE.14 One explanation for this finding is provided by Hahn and Newey (2004, p. 1307),
who state that if the score bias can be attributed to the (normalized) scale parameter, then reducing the bias may lead
to a decrease in the variance. An alternative explanation is given by (6.8)c and (6.8)b: Reducing the score bias causes the
Op(n/T ) term in (6.8)c to be replaced by the Op(n/T 3) term in (6.8)b, thereby reducing the variance.

In the decomposition for var0
√
nT (θ̂p − θ0) − F−1

·T , the term due to the hessian bias of p dominates the term due to
the information bias of p by an order of magnitude when p is FOIU. In contrast, the hessian bias of a pseudologlikelihood
does not enter (6.2)a–(6.2)d at all. This explains why first-order information unbiasedness of a pseudologlikelihood has
a greater impact on inference than on estimation. Unlike for the estimation bias, (6.8)a, (6.8)b, and (6.8)c suggest that
p being FOIU can reduce the deviation of the variance of θ̂p from the variance of the oracle estimator: The deviation is
the largest if p is neither FOSU nor FOIU, smaller if p is FOSU but not FOIU, and the smallest if p is both FOSU and FOIU.
ince this ranking is based on comparing the rates inside the Op terms in (6.8)a, (6.8)b, and (6.8)c, it may not hold if the

constants in the Op terms are not comparable across the pseudolikelihoods; cf., e.g., the discussion after SST (Eqn. 10.1).15

In some special cases, the variances of θ̂p and the oracle estimator can be obtained in closed form for each n, T without
ny Op terms. E.g., it is shown in Example 6.3 that, in the Neyman–Scott model, the Op(n/T ) term in (6.8)c, which is
ypically the dominating term since n grows faster than T , does not appear in (6.10)c, and the Op(n/T 3) terms in (6.8)a
nd (6.8)b are not present in (6.10)a and (6.10)b. Consequently, in Example 6.3, it is the fixed effects MLE that has the
mallest finite sample variance of all the estimators considered there including the oracle estimator, and, hence, the
mallest deviation from the oracle variance.

xample 6.3 (Example 6.1 Contd.). For the pseudolikelihoods considered in Example 6.1, the baseline variance F−1
·T and

ar0
√
nT (θ̂p − θ0) can be obtained in closed form. Indeed, as shown in Appendix E.3, in the Neyman–Scott model, we

have, for each n, T ≥ 2,

F−1
·T = 2θ2

0 , (6.9)

nd

var0
√
nT (θ̂p − θ0) − F−1

·T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2θ2
0

T − 1  
due to hessian bias

if p = ℓ̄zse
·T (a)

2θ2
0

T − 1  
due to info bias

if p = p
adj
·T (b)

−
2θ2

0

T  
due to score, info, hessian bias

if p = ℓ
p
·T . (c)

(6.10)

As mentioned in Example 6.1, the global maximizer of padj
·T coincides with the global maximizer of ℓ̄zse

·T . Therefore, since
the estimators in (6.10)a and (6.10)b are the same, it is not surprising that the right-hand sides of (6.10)a and (6.10)b are
identical. However, the sources of the 2θ2

0 /(T − 1) terms in (6.10)a and (6.10)b are different because ℓ̄zseiT ̸= p
adj
iT . Indeed,

since, in the Neyman–Scott model, ℓ̄zseiT is {score, information}-unbiased, the 2θ2
0 /(T −1) term in (6.10)a is due entirely to

14 However, the Neyman–Scott model is an exception (cf. the discussion in Example 6.3).
15 Except in special cases such as Example 6.3, even the signs of the Op terms in (6.8)a, (6.8)b, and (6.8)c cannot be determined because it is
not possible to sign the Op terms in (6.4)a–(6.6) for general pseudolikelihoods. However, as discussed after 6.2, several simulation studies in the
literature have found that FOSU pseudolikelihoods yield estimators with variances smaller than the fixed effects MLE.
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the hessian bias of ℓ̄zseiT . In contrast, the 2θ2
0 /(T − 1) term in (6.10)b is due entirely to the information bias of padjiT because

it is {score, hessian}-unbiased. The right-hand side of (6.10)c is a function of the score, information, and hessian biases
because ℓ

p
iT is neither FOSU, nor FOIU, nor FOHU. Furthermore, unlike panel logit and probit, in the Neyman–Scott model

the variances of the score bias corrected pseudologlikelihoods in finite samples are larger than the variance of the fixed
effects MLE for each n, T . In fact, the finite sample variance of the fixed effects MLE is even smaller than that of the oracle
estimator. □

The insights from (6.8)a and (6.8)b also apply to conditional (on sufficient statistics) likelihoods. They reveal that the
conditional (on the covariates) mean-squared error (mse0) of the CMLE in small samples may be comparable to – instead of
being smaller than – the MSE of θ̂p if p is FOSU.16 This suggests that bias corrected estimators may be viable alternatives for
CMLEs even in models where the latter exist. Indeed, although conditional likelihoods are score and information unbiased
because they are genuine likelihoods (Remark 5.1), they are not FOHU in general.17 Therefore, since there are no Op terms
due to the score and information bias, var0

√
nT (θ̂CMLE − θ0)

(6.8)a
= F−1

·T + Op(T−1), where the Op(T−1) term is due to the
essian bias alone. By (6.3)c, the bias of the CMLE is Op(1/nT ). Hence,

mse0(θ̂CMLE) =
1
nT

[F−1
·T + Op(

1
T
)] + Op(

1
n2T 2 ).

Similarly, by (6.3)a and (6.8)b,

mse0(θ̂p) =
1
nT

[F−1
·T + Op(

1
T
) + Op(

n
T 3 ) + Op(

1
T
)] + Op(

1
T 4 ).

Therefore, mse0(θ̂CMLE) = mse0(θ̂p) if n, T grow at the same rate.
In the decomposition for var0

√
nT (θ̂p − θ0) − F−1

·T in (6.8)a, (6.8)b, and (6.8)c, the hessian bias of p is of smaller order
han its information bias even when p is FOIU. This naturally suggests searching for an additive correction to the profile
oglikelihood such that the resulting pseudologlikelihood, in addition to being FOSU, is also FOIU with its hessian bias
educed by an order of magnitude. In other words, one can ask, ‘‘Does there exist a FOSU piT , which is simultaneously
OIU and FOHU?’’ Excluding the target likelihood, which is {score, information, hessian}-unbiased by definition, it is
traightforward to show that the answer to this question is ‘‘No’’ in the Neyman–Scott model. In particular, for the
seudolikelihoods in Example 6.3, ℓ̄zseiT is {score, information}-unbiased but not FOHU (Remark B.2), whereas padjiT is {score,
essian}-unbiased but not FOIU (Remark B.3). Remarkably, these are not isolated cases restricted to the Neyman–Scott
odel because the next result (proved in Appendix F.3) shows that:

roposition 6.1. Among all additive correction to a general panel data profile loglikelihood that make it FOSU, there does
ot exist one that also makes it FOIU and FOHU.

For a FOSU pseudologlikelihood to be FOHU and FOIU, the model loglikelihood ℓiT (θ, αi) has to satisfy a necessary
ondition. To see this condition, expand the profile likelihood about the target likelihood (SST, Supplement, Eqn. F.30)
nd take expectations to obtain

E0ℓ
p
iT (θ ) = E0ℓiT (θ ) + BiT (θ ) + Op(T−2), (6.11)

here

BiT (θ ) := −
E0ℓ

2
iTα(θ )

2E0ℓiTαα(θ )
, (6.12)

ith ℓiTα(θ ) := ℓiTα(θ, α∗

iT (θ )) and ℓiTαα(θ ) := ℓiTαα(θ, α∗

iT (θ )), so that ∇θBiT (θ0) is the first-order score bias of the profile
oglikelihood. By (6.5) and (6.11),

E0piT (θ )
Ass. A.2

= E0ℓiT (θ ) + BiT (θ ) + E0CiT (θ ) + Op(T−2). (6.13)

Differentiating (6.13) twice with respect to θ and evaluating at θ0, the hessian bias of piT is

− HpiT − FiT
Ass. A.2

= −∇
2
θθBiT (θ0) − ∇

2
θθE0CiT (θ0) + Op(T−2). (6.14)

Since derivatives can be exchanged with expectations, and the target likelihood satisfies the 1st Bartlett identity, we have,
by Assumption A.2, that

piT is FOSU
(6.13)
⇐⇒ ∇θBiT (θ0) + E0∇θCiT (θ0) = Op(T−2) (6.15)

piT is FOHU
(6.14)
⇐⇒ ∇

2
θθBiT (θ0) + E0∇

2
θθCiT (θ0) = Op(T−2). (6.16)

16 This may appear paradoxical at first sight because the CMLE, being semiparametrically efficient (Hahn, 1997), is expected to perform better in
small samples than its competitors.
17 E.g., in the Neyman–Scott model, the conditional likelihood is not FOHU because it coincides with the integrated likelihood of SST, which is
not FOHU (Remark B.2).
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DiCiccio et al. (1996, Eqn. 7) give an expression for the information bias corresponding to any additively adjusted unscaled
(by the sample size) profile loglikelihood. It can be seen from this expression that, for each individual, the information
bias of any additively adjusted scaled (by 1/T ) profile loglikelihood depends (modulo a 1/T 2 term) on the expectation
of the second derivative (with respect to the parameter of interest) of the adjustment term. They further show (cf. their
Section 3.2) that the first-order information bias disappears if and only if the expectation of the second derivative of the
adjustment term is equal to the second derivative of the additive correction proposed by Barndorff-Nielsen (1983), plus
an Op(T−2) term. In other words,

piT is FOIU ⇐⇒ E0∇
2
θθCiT (θ0) = ∇

2
θθ [AiT1(θ0) + AiT2(θ0)] + Op(T−2), (6.17)

where, letting ℓiTα := ℓiTα(θ0, αi0), the Barndorff-Nielsen correction terms are

AiT1(θ ) :=
1
2T

log(−E0ℓiTαα(θ )) & AiT2(θ ) := −
1
T
log(TE0ℓiTα(θ )ℓiTα). (6.18)

f the pseudologlikelihood piT is FOSU, i.e., CiT satisfies (6.15), then, by (6.16) and (6.17), a necessary condition for piT to
e FOHU and FOIU is that

∇
2
θθBiT (θ0) + ∇

2
θθ [AiT1(θ0) + AiT2(θ0)] = Op(T−2). (6.19)

ote that (6.19) does not depend on the correction CiT , but is a condition on the model loglikelihood. Therefore, to prove
roposition 6.1, we show in Appendix F that (6.19) cannot hold for general panel data likelihoods, excluding, of course,
he target likelihood.

Showing that (6.19) does not hold for the Neyman–Scott model is straightforward.

xample 6.4 ( Example 6.1 Contd.). In the Neyman–Scott model, ℓiTα(θ, αi)
(B.1)
=

∑T
t=1(Yit − αi)/Tθ H⇒ ℓiTαα(θ, αi) =

1/θ . Hence, as α∗

iT (θ )
(B.20)
= αi0 for each θ and ℓiTα := ℓiTα(θ0, αi0),

ℓiTα(θ ) := ℓiTα(θ, α∗

iT (θ )) =
1
Tθ

T∑
t=1

(Yit − αi0) =
1
Tθ

T∑
t=1

Uit (6.20)

ℓiTαα(θ ) := ℓiTαα(θ, α∗

iT (θ )) = −
1
θ

(6.21)

E0ℓ
2
iTα(θ ) =

1
T 2θ2

T∑
t=1

E0U2
it =

θ0

Tθ2 (6.22)

E0ℓiTα(θ )ℓiTα
(6.20)
= E0[

1
Tθ

T∑
t=1

Uit
1

Tθ0

T∑
t=1

Uit ] =
1

T 2θθ0

T∑
t=1

E0U2
it =

1
Tθ

. (6.23)

onsequently,

BiT (θ )
(6.12)
= −

E0ℓ
2
iTα(θ )

2ℓiTαα(θ )
(6.21) & (6.22)

=
θ0

2Tθ
H⇒ ∇

2
θθBiT (θ0) =

1
Tθ2

0

AiT1(θ )
(6.18)
=

1
2T

log(−ℓiTαα(θ ))
(6.21)
=

1
2T

log(θ−1) H⇒ ∇
2
θθAiT1(θ0) =

1
2Tθ2

0

AiT2(θ )
(6.18)
= −

1
T
log(TE0ℓiTα(θ )ℓiTα)

(6.23)
=

1
T
log(θ ) H⇒ ∇

2
θθAiT2(θ0) = −

1
Tθ2

0
.

t follows that

∇
2
θθBiT (θ0) + ∇

2
θθ [AiT1(θ0) + AiT2(θ0)] =

1
Tθ2

0
+

1
2Tθ2

0
−

1
Tθ2

0
=

1
2Tθ2

0
̸= Op(T−2).

herefore, (6.19) does not hold in the Neyman–Scott model. □

. Discussion

In this section, we summarize the relevance of our results for applied econometric practice, provide some motivation
ehind the proof of Lemma 6.1 (the main result in this paper), and discuss its extension to nonlinear dynamic models.

.1. Relevance of our results for applied researchers

As mentioned in the introduction, the results obtained in this paper provide a theoretical explanation for the improved
erformance of modified likelihoods in small samples that researchers frequently discover in their simulation studies in
he literature on nonlinear panel data models with fixed effects. The following observations, which applied researchers
orking in this area may find helpful, summarize our key findings:
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(i) As emphasized in Example 6.1, it is possible for two different pseudolikelihoods to deliver identical estimators while
exhibiting very different behavior in terms of their LR-based inference.

(ii) If the focus is on estimating the common parameters, then FOSU pseudolikelihoods should be preferred over the
non-FOSU pseudolikelihoods, because maximizing them yields estimators that perform better in small samples in
terms of both bias (cf. (6.3)a and (6.3)b) and variance (cf. (6.8)a–(6.8)c), as compared to the maximizers of the
non-FOSU pseudolikelihoods. Furthermore, estimators that correct the bias of the profile likelihood score not only
perform better in terms of bias, but may also have a lower finite sample variance than the fixed effects MLE. In
particular, if n and T are comparable, then bias corrected estimators may be viable alternatives for CMLEs even in
models where the latter exist (cf. the discussion following (6.8)a–(6.8)c and Example 6.3).

(iii) However, if the focus is on LR-based inference, then Lemma 6.1 shows that although FOSU pseudolikelihoods can
be expected to perform substantially better than non-FOSU pseudolikelihoods, applied researchers can expect the
most accurate results when using pseudolikelihoods that are both FOSU and FOIU. This also explains why confidence
regions based on conditional (on sufficient statistics) likelihoods can have excellent coverage even in very short
panels.

.2. Motivating the proof of Lemma 6.1

Although the proof of Lemma 6.1 in Appendix C and F.1 is challenging because the remainder terms have a complicated
tructure, the basic idea behind the proof is easy to motivate. Assume dim(θ0) = 1 to avoid the array notation for higher
order derivatives with respect to θ . Then, by a Taylor expansion,

E0LR
p
nT (θ0) := 2nTE0[p·T (θ̂p) − p·T (θ0)]

= 2nTE0[p·T1(θ0)(θ̂p − θ0)] + nTE0[p·T2(θ0)(θ̂p − θ0)2] + RemnT ,

where the additional subscripts in p·T denote its derivatives with respect to θ (this notation is explained in Appendix A).
The first two terms in the above expansion depend on whether p is FOSU or FOIU. E.g., if p is both FOSU and FOIU, then
using an expansion for θ̂p − θ0 and centering terms around their expectations, yields

2nTE0[p·T1(θ0)(θ̂p − θ0)] = 2nT
E0p

2
·T1(θ0)

−E0p·T2(θ0)
+ Op(

n
T 3 ) = 2 + Op(

n
T 3 ) + Op(

1
T 2 )

nTE0[p·T2(θ0)(θ̂p − θ0)2] = nT
E0p

2
·T1(θ0)

E0p·T2(θ0)
+ Op(

n
T 3 ) = −1 + Op(

n
T 3 ) + Op(

1
T 2 )

RemnT = Op(
1
T 2 ) + Op(

1
nT

),

which leads to (6.2)a because n grows at least as fast as T . In contrast, if p is neither FOSU nor FOIU, then

2nTE0[p·T1(θ0)(θ̂p − θ0)] = 2 + Op(
n
T
) + Op(

1
T
)

nTE0[p·T2(θ0)(θ̂p − θ0)2] = −1 + Op(
n
T
) + Op(

1
T
)

RemnT = Op(
n
T
) + Op(

n
T 3 ),

hich leads to (6.2)c.
The rates for the remainder terms in all these expansions depend on how the data are sampled (Assumption A.1), the

ell-behavedness of p (Assumptions A.2, A.3, A.5, A.6, and A.7), and the rates at which n and T can grow (Assumption A.4).
n particular, an examination of the details in the proof of Lemma 6.1 in Appendix F.1 reveals that it is essentially
ssumptions A.6 and A.7 — which are justified in Appendix A under time-independence of outcomes (Assumption A.1(ii))
that determine the rates for the remainder terms. This suggests that if Assumptions A.6 and A.7 hold for dependent

utcomes as well, then so does Lemma 6.1. In fact, as shown in the next section, Assumptions A.6 and A.7 continue to
old if the outcomes are weakly dependent.

.3. Extending the results in Lemma 6.1 to nonlinear dynamic models

In a nonlinear dynamic AR(p) panel data model, where p ∈ N is known and p < T , the period t outcome Yit is modeled
s a nonlinear function of the p predetermined outcomes (Yi,t−p, . . . , Yi,t−1), additional covariates, and the fixed effects.
et I := (Y , Y , . . . , Y , Y ) denote the vector of pre-sample outcomes, and I := (I , Y , . . . , Y ), t ≥ 2.
i0 i,1−p i,2−p i,−1 i0 i,t−1 i0 i1 i,t−1
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The density of the sample outcomes, conditional on all the explanatory variables, is defined to be

fYiT |XiT ,Ii0,αi0;θ0 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

T∏
t=1

fYit |Ii,t−1,Xi1,...,Xit ,αi0;θ0 if the additional covariates are treated

as being predetermined in each period
T∏

t=1

fYit |Ii,t−1,Xi1,...,XiT ,αi0;θ0 if the additional covariates are treated

as being strictly exogenous in each period,

(7.1)

here it is assumed that the variables in Ii0 are observed. In this setting, the pseudologlikelihood piT (θ ) is obtained
rom fYiT |XiT ,Ii0,αi;θ after eliminating the fixed effects, and (E0, cov0) denote the (expectation, covariance) with respect
to fYiT |XiT ,Ii0,αi0;θ0 .

Conditional on ((Xit )t∈N, Ii0, αi0), the dependence in the outcomes can be controlled by imposing a mixing condi-
tion as in Prakasa Rao (2009, Definition 4). Henceforth, let σ ((Xit )t∈N, Ii0, αi0) denote the sigma-algebra generated by
(Xit )t∈N, Ii0, αi0).

efinition 7.1 (Conditional Strong Mixing, Prakasa Rao, 2009). For each i ∈ N, the sequence of random variables (Yit )t∈N is
aid to be conditionally ai-mixing given Fi := σ ((Xit )t∈N, Ii0, αi0) if, for each m ∈ N, the nonnegative random variable

ai(m) := sup
t∈N

sup
A∈σ (Yi1,...,Yit )

B∈σ (Yi,t+m,Yi,t+m+1,...)

| Pr(A ∩ B | Fi) − Pr(A | Fi) Pr(B | Fi)|
w.p.1

−−−→
m→∞

0. □

Sufficient conditions under which AR(p)-processes are conditionally ai-mixing can be derived using the approach
of Andrews (1983), de Jong and Woutersen (2011), and Hahn and Kuersteiner (2011, Remarks 1–3) (cf. the discussion
after Assumption A.8). E.g., following Andrews (1983) (Remark 3, p. 13), the outcomes from a dynamic Neyman–Scott
model investigated in SST (Section 9.2) are conditionally ai-mixing.

Under Assumption A.8, which is motivated by Hahn and Kuersteiner (2011) (Condition 3), Lemma A.1, proved in Ap-
pendix D, shows that Assumptions A.6 and A.7 continue to hold when the outcomes are conditionally ai-mixing. Therefore,
although a rigorous proof is beyond the scope of our paper, the analysis here suggests that, under Assumptions A.2–A.5
and A.8, Lemma 6.1 holds for nonlinear dynamic AR(p) panel data models as well. Hence, the insights from Lemma 6.1
are also relevant to the dynamic Neyman–Scott model.

8. Conclusion

We have provided a theoretical explanation behind why reducing information bias can improve the performance
of likelihood based estimators and confidence regions in small samples, and why it matters more for inference than
for estimation. This helps explain several simulation findings in the panel data literature. In this paper, we do not
consider higher order corrections to the profile loglikelihood, even though such corrections can potentially lead to further
improvements in Lemma 6.1. E.g., we conjecture that the 2nd order corrections in Dhaene and Sun (2021) and Schumann
(2022) can reduce the Op(n/T 3) term in (6.2)b to an Op(n/T 5) term. A referee has also suggested the possibility of
developing a general framework incorporating additive and non-additive corrections to the profile loglikelihood that
allows for simultaneous {score, information, hessian}-bias reduction. Moreover, since time-specific parameters and
dependence across i are ruled out by our sampling assumption, it would also be interesting to know the extent to which
the results in this paper continue to hold in the presence of time effects and cross-sectional dependence. We leave the
investigation of these issues as topics for future research.
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Appendix A. Assumptions

The following assumptions are used to prove Lemma 6.1, Lemma 6.2, (6.6), and Proposition 6.1 in Appendix C and F–H.
Results for the Neyman–Scott model in Appendix B and E only use Assumption A.1 and properties of Gaussian likelihoods.
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Assumption A.1. (i) For each T , (Y1T ,X1T , α10), . . . , (YnT ,XnT , αn0) are i.i.d.; (ii) For each i, conditional on (XiT , αi0), the
utcomes Yi1, . . . , YiT are independent; (iii) For each i, there are no time-varying parameters or time-trends in fYiT |XiT ,αi0;θ0 .

(i) stipulates that observations across i are independently and identically distributed, which is typical in microecono-
etric applications. For each individual, (ii) imposes conditional independence within the outcomes, hereafter referred

o as ‘‘time-independence’’, which rules out lagged outcomes as explanatory variables (cf. Assumption A.8 for dependent
utcomes). This assumption greatly simplifies the algebra required for our results. Moreover, as this assumption is also
sed in SST, it allows us to directly use their results. Since the approximations we make are justified as n, T → ∞,
ncluding an infinite number of time-specific parameters (i.e., time effects), in addition to an infinite number of fixed
ffects, will significantly increase the technical complexity of the proofs (cf., e.g., Fernández-Val and Weidner, 2016) while
bscuring the main objective and contribution of our paper, namely, to obtain theoretical insights helpful in explaining
everal simulation findings in the panel data literature. Therefore, (iii), which follows if, for each i, conditional on αi0, the
rocess (Yit , Xit )t∈N is strictly stationary, is maintained for mathematical tractability.
The next high-level assumption allows us to deal with the remainder terms in various expansions. Assumptions A.1

nd A.2 can be justified following the discussion in SST (Assumptions 2.3 and C.9).

ssumption A.2. The rate at which a remainder term approaches zero (as T → ∞) holds when averaged over
= 1, . . . , n. Taking the derivative or expectation of a remainder term does not alter the rate.

The following is assumed about θ0 and θ̂p := argmaxθ∈Θ p·T (θ ):

ssumption A.3. The common parameter θ0 is identified as the well-separated global maximum of the limit, as
, T → ∞, of the expected target loglikelihood. The estimator θ̂p is consistent for θ0 as n, T → ∞. Furthermore, as
, T → ∞,

√
nT (θ̂p − θ0) =

⎧⎪⎨⎪⎩
Op(1) + Op( 1

√
T
) + Op(

√
n
T3

) if p is FOSU (a)

Op(1) + Op(
√ n

T ) if p is not FOSU (b)
Op(1) if p is the target loglikelihood. (c)

(A.1)

The assumption that θ0 is the well-separated global maximum of the limiting expected target loglikelihood is also
aintained in SST (cf. their Assumption C.5(vii) for a precise statement). Consistency of θ̂p, which is necessary for A.3,

A.3, and A.3, can be shown under standard regularity conditions; cf., e.g., SST (Theorem 8.1) for the proof of consistency
of the MILE. A.3 holds for the MILE by SST (Eqn. G.7 and G.9). A.3 holds for the fixed effects MLE by SST (Eqn. C.7). The
Op(

√
n/T 3) term in A.3 is due to the fact that p is FOSU, and the Op(T−1/2) term in A.3 arises when p is approximated by

he target likelihood in order to show that
√
nT (θ̂p − θ0) is asymptotically linear. If p is not FOSU, then the Op(

√
n/T 3)

erm in A.3 becomes the Op(
√
n/T ) term in A.3. Since the target likelihood is score unbiased, A.3 does not contain any

p(
√
n/T 3) or Op(T−1/2) terms. Score unbiasedness of the target likelihood implies that if θ0 also happens, for each T , to

e the unique well-separated zero of the moment condition E∇θℓiT (θ0) = 0, then the oracle estimator θ̂∗ is consistent
or θ0 as n → ∞ and T is held fixed.

The following assumption restricts the rates at which n and T can grow.

ssumption A.4. (i) n grows at least as fast as T , i.e., limn,T→∞ n/T ∈ (0, ∞]; (ii) T 3 grows faster than n,
.e., limn,T→∞ n/T 3

= 0.

(i) emphasizes that we are modeling short panels by restricting T to grow no faster than n: If limn,T→∞ n/T ∈ (0, ∞),
hen n grows at the same rate as T , whereas limn,T→∞ n/T = ∞ implies that n grows faster than T ; hence, if
imn,T→∞ n/T ∈ (1, ∞], then n is eventually (much) larger than T . Under this assumption, the Op(n/T ) terms in 6.1,
.1, and A.3, do not vanish as n, T → ∞. This ensures that if piT is not FOSU, then we do not simply assume away the

resulting bias in E0LR
p
nT (θ0) and

√
nT (θ̂p − θ0) by making T grow faster than n. (ii) ensures that E0LR

p
nT (θ0) in 6.1 and 6.1

converges to dim(θ0) as n, T → ∞. SST (Theorem 8.2) show that the MILE is asymptotically normal if n/T 3
→ 0. (i) and

(ii) are used repeatedly to simplify the expressions for the remainder terms.
If p is FOSU, then, with rnT := 1 + T−1/2

+
√
n/T 3,18

θ̂p − θ0
A.3
= Op(

rnT
√
nT

)  
FOSU

Ass. A.4(ii)
= Op(

1
√
nT

)  
FOSU

, (A.2)

18 Henceforth, the label FOSU is used to tag terms that depend on the first-order score unbiasedness of piT . Similarly, the label FOIU tags terms
that depend on the first-order information unbiasedness of p .
iT
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because rnT
Ass. A.4(ii)

= O(1). If p is not FOSU, then, with snT := 1 +
√
n/T ,

θ̂p − θ0
A.3
= Op(

snT
√
nT

) = Op(
1

√
nT

+
1
T
) = Op(

1
T

[1 +
1

√
n/T

])
Ass. A.4(i)

= Op(
1
T
). (A.3)

Eqs. (A.2) and (A.3) are used to bound terms in the proof of Lemma 6.1.
Additional notation. We need some additional notation for the subsequent assumptions, which hold for all the

pseudolikelihoods that we consider, as well as for the target likelihood. Henceforth, denote derivatives with respect to θ

by subscripts (these definitions make sense if dim(θ0) = 1, as is assumed in Appendix C and F–H for notational simplicity).
Specifically, for k ∈ {1, 2, 3, 4}, let p·Tk(θ ) := n−1 ∑n

i=1 piTk(θ ) with piTk(θ ) := ∂k
θ piT (θ ). In addition, letting λiT (θ ) := E0piT (θ ),

λiTk(θ ) := E0piTk(θ ), λ·T (θ ) := E0p·T (θ ), and λ·Tk(θ ) := E0p·Tk(θ ), define the centered versions of piT (θ ), piTk(θ ), p·T (θ ), and
p·Tk(θ ), to be liT (θ ) := piT (θ ) − λiT (θ ), liTk(θ ) := piTk(θ ) − λiTk(θ ), l·T (θ ) := p·T (θ ) − λ·T (θ ), and l·Tk(θ ) := p·Tk(θ ) − λ·Tk(θ ),
respectively, so that, by construction, E0liT (θ ) = E0liTk(θ ) = E0l·T (θ ) = E0l·Tk(θ ) = 0.19

The next assumption, which can be justified under time-independence by bounding the individual summands, is used
to bound terms in the proofs of the auxiliary results required to prove 6.1.

Assumption A.5. The following are bounded in probability, i.e., Op(1), as n, T → ∞: (i) p·T1(θ0) and p·T3(θ0);
(ii) supθ∈Θ |p·T4(θ )| and supθ∈Θ |p·T5(θ )|; (iii) λ−1

·T2(θ0), λ·T3(θ0), and λ·T4(θ0).

The next assumption is used to prove the results in Appendix F.1.

Assumption A.6. As n, T → ∞,

E0[l·Tk1 (θ0)l·Tk2 (θ0)l·Tk3 (θ0)] = Op(
1

n2T 2 ), k1, k2, k3 ∈ {1, 2, 3, 4}. (A.4)

If p does not depend on a preliminary estimator, e.g., the target likelihood, the profile likelihood, or the integrated
likelihood of Lancaster, then (A.4) holds under time-independence. If p depends on a preliminary estimator, e.g., the
integrated likelihoods of Arellano–Bonhomme and SST, then (A.4) can be justified under time-independence and additional
regularity conditions. E.g., in Appendix H.2 we show that the integrated likelihood of SST, which requires the fixed effects
MLE for its construction, satisfies (A.4) under the assumptions in Appendix H.1.

The following assumption, which can also be justified under time-independence and additional regularity conditions,
stipulates that the variance of the derivatives of p·T is inversely proportional to the size of the panel data set. It is used
to prove the results in Appendix F.1.

Assumption A.7. As n, T → ∞,

E0l2·Tk(θ0) = var0 p·Tk(θ0) = Op(
1
nT

), k ∈ {1, 2, 3, 4}. (A.5)

It is shown in Appendix H.2 that the integrated likelihood of SST satisfies (A.5) under time-independence and additional
assumptions in Appendix H.1. Since E0l·Tk(θ0) = 0 by construction, an implication of (A.5) used in the proofs is that

l·Tk(θ0) = Op(
1

√
nT

), k ∈ {1, . . . , 4}. (A.6)

emark A.1. Assumptions A.6 and A.7, justified earlier under time-independence, also hold when the outcomes are
eakly dependent provided Assumption A.1 is suitably strengthened. The following assumption, motivated by Hahn
nd Kuersteiner (2011) (Condition 3), employs the notion of conditional ai-mixing given in Definition 7.1; the centered
erivative litk(θ0) in (iv) is now a functional of the pseudologlikelihood resulting from fYiT |XiT ,Ii0,αi0;θ0 defined in (7.1).

ssumption A.8 (Dependent Outcomes). (i) The random variables ((Yit , Xit )t∈N, Ii0, αi0) are i.i.d. for i ∈ N; (ii) For each
∈ N, the distribution of ((Yit , Xit )t∈N, Ii0, αi0) is strictly stationary; (iii) The sequence of random variables (Yit )t∈N is

onditionally ai-mixing given σ ((Xit )t∈N, Ii0, αi0). There exists a ∈ (0, 1) such that, for all m ∈ N, supi∈N ai(m)
w.p.1
≲ am;20

(iv) There exists a σ ((Xit )t∈N, Ii0, αi0)-measurable function di ≥ 0 such that, for k ∈ {1, . . . , 4}, supt∈N E0|litk(θ0)|8
w.p.1
≤ di

with n−1 ∑n
i=1 di = Op(1) as n → ∞.

19 To keep the notation simple, we suppress the dependence of λiT , λ·T , liT , l·T , and their derivatives, on p. In addition, keep in mind that in the
definition of λiT the symbol E0 denotes expectation with respect to fYiT |XiT ,αi0;θ0 , whereas in the definition of λ·T the symbol E0 is expectation with
respect to

∏n
i=1 fYiT |XiT ,αi0;θ0 .

20 Henceforth, the symbol ≲ indicates that the left-hand side of an inequality is bounded by a positive constant times the right-hand side, where
the constant does not depend on n, T .
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(i, ii) are the counterparts of Assumption A.1(i, iii) when the outcomes are correlated. As in Hahn and Kuersteiner
2011) (Condition 3(iii)), the bound on the mixing coefficient in (iii) implies that the dependence in the outcomes decays
xponentially. Existence of the dominating function in (iv) ensures that (iii) and a conditional covariance inequality of
rakasa Rao (2009) (Theorem 9(ii), Eqn. 63) can be used to bound the covariance between elements of the sequence
litk(θ0))t∈N. Following the discussion in Hahn and Kuersteiner (2011) (Remarks 2 and 3), sufficient primitive conditions
under which (iii, iv) hold for dynamic logit and probit panel data models can be derived using de Jong and Woutersen
(2011) (Theorems 1 and 2) under the assumption that the additional covariates and the fixed effects have bounded
support.

Lemma A.1. Let Assumption A.8 hold and n, T → ∞. Then, for k1, k2, k3 ∈ {1, . . . , 4},

E0l·Tk1 (θ0)l·Tk2 (θ0) = Op(
1
nT

) (A.7)

E0l·Tk1 (θ0)l·Tk2 (θ0)l·Tk3 (θ0) = Op(
1

n2T 2 ). (A.8)

Lemma A.1, proved in Appendix D, shows that Assumptions A.6 and A.7 continue to hold when the outcomes are
eakly dependent. □

ppendix B. Score, information, and hessian bias of the pseudolikelihoods in the neyman–scott model

In this section, we show that, in the Neyman–Scott model: (i) The profile likelihood is neither FOSU nor FOIU. (ii) The
ntegrated likelihood of SST constructed with πi := 1 is both score unbiased and information unbiased. (iii) The adjusted
ikelihood is score unbiased but not FOIU. (iv) The target likelihood in the Neyman–Scott model is a genuine likelihood,
.e., it satisfies all of the Bartlett identities.

Throughout this section, Ȳi· := T−1 ∑T
t=1 Yit , Ÿit := Yit − Ȳi·, Ūi· := T−1 ∑T

t=1 Uit , and Üit := Uit − Ūi·. Keep in mind that
Ÿit = Üit because Yit = αi0 + Uit . The results in this section only require Assumption A.1.

B.1. Profile likelihood

The Neyman–Scott model likelihood for individual i is LiT (θ, αi) =
∏T

t=1
1

√
2πθ

e−(Yit−αi)2/2θ . Hence,

ℓiT (θ, αi) = −
1
2
log(2π ) −

1
2
log(θ ) −

1
2Tθ

T∑
t=1

(Yit − αi)2, (B.1)

which implies that α̂iT (θ ) = Ȳi·. Therefore, the profile loglikelihood for individual i is

ℓ
p
iT (θ ) = −

1
2
log(2π ) −

1
2
log(θ ) −

1
2Tθ

T∑
t=1

Ÿ 2
it . (B.2)

y (B.2), and the fact that Ÿit = Üit ,

∇θℓ
p
iT (θ ) = −

1
2θ

+
1

2Tθ2

T∑
t=1

Ü2
it & ∇

2
θθℓ

p
iT (θ ) =

1
2θ2 −

1
Tθ3

T∑
t=1

Ü2
it . (B.3)

Since UiT := (Ui1, . . . ,UiT )T×1 | αi0
d
= N(0d×1, θ0IT ), where IT is the T × T identity matrix,

T∑
t=1

Ü2
it = U

′

iT (IT −
1
T
1T1′

T )UiT | αi0
d
= θ0χ

2
T−1 (B.4)

y Cochran’s theorem, where 1T := (1, . . . , 1)T×1. Therefore (cf. (E.31)),

E0

T∑
t=1

Ü2
it = (T − 1)θ0 & E0[

T∑
t=1

Ü2
it ]

2
= (T 2

− 1)θ2
0 . (B.5)

By (B.3) and (B.5),

E0∇θℓ
p
iT (θ ) = −

1
2θ

+
1

2Tθ2 (T − 1)θ0 H⇒ E0∇θℓ
p
iT (θ0) = −

1
2θ0T

. (B.6)

Hence, the profile likelihood is not FOSU. By (B.3) and (B.5) again,

E0∇
2
θθℓ

p
iT (θ ) =

1
2 −

1
3 (T − 1)θ0 H⇒ E0∇

2
θθℓ

p
iT (θ0) = −

1
2 +

1
2 (B.7)
2θ Tθ 2θ0 Tθ0
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E0[∇θℓ
p
iT (θ )]

2
= E0[−

1
2θ

+
1

2Tθ2

T∑
t=1

Ü2
it ]

2
=

1
4θ2 +

1
4T 2θ4 (T

2
− 1)θ2

0 −
2

4Tθ3 (T − 1)θ0,

hich implies that

E0[∇θℓ
p
iT (θ0)]

2
=

1
2Tθ2

0
−

1
4T 2θ2

0
. (B.8)

ence,

TE0[∇θℓ
p
iT (θ0)]

2
+ E0∇

2
θθℓ

p
iT (θ0) =

3
4θ2

0 T
. (B.9)

Therefore, the profile likelihood is also not FOIU.

Remark B.1. By (B.6) and (B.9), the profile likelihood in the Neyman–Scott model is neither FOSU nor FOIU. It is also
not FOHU because FiT

Remark B.4
= (2θ2

0 )
−1 and, by (B.7), −E0∇

2
θθℓ

p
iT (θ0) − FiT = (−Tθ2

0 )
−1. □

B.2. Integrated likelihood of SST

In the Neyman–Scott model, the ZSE transformation and its inverse are the identity maps from R → R (SST,
Example 9.1). Hence, the individual integrated likelihood of SST constructed with πi := 1 is given by

L̄zseiT (θ ) =

∫
R
LiT (θ, φ) dφ = (2π )−(T−1)/2T−1/2θ−(T−1)/2e−

∑T
t=1 Ÿ

2
it /2θ ,

Therefore, the integrated loglikelihood of SST for individual i is

ℓ̄zseiT (θ ) = −
T − 1
2T

log(2π ) −
1
2T

log(T ) −
T − 1
2T

log(θ ) −
1

2Tθ

T∑
t=1

Ÿ 2
it . (B.10)

y (B.10), and the fact that Ÿit = Üit ,

∇θ ℓ̄
zse
iT (θ ) = −

T − 1
2Tθ

+
1

2Tθ2

T∑
t=1

Ü2
it & ∇

2
θθ ℓ̄

zse
iT (θ ) =

T − 1
2Tθ2 −

1
Tθ3

T∑
t=1

Ü2
it . (B.11)

By (B.5) and (B.11),

E0∇θ ℓ̄
zse
iT (θ ) = −

T − 1
2Tθ

+
1

2Tθ2 (T − 1)θ0.

Consequently, it is immediate that

E0∇θ ℓ̄
zse
iT (θ0) = 0, (B.12)

i.e., the integrated likelihood of SST is score unbiased. Moreover, by (B.5) and (B.11),

E0∇
2
θθ ℓ̄

zse
iT (θ ) =

T − 1
2Tθ2 −

1
Tθ3 (T − 1)θ0

E0[∇θ ℓ̄
zse
iT (θ )]2 =

(T − 1)2

4T 2θ2 +
1

4T 2θ4 (T
2
− 1)θ2

0 −
2(T − 1)
4T 2θ3 (T − 1)θ0.

(B.13)

ence, it is straightforward to verify that

TE0[∇θ ℓ̄
zse
iT (θ0)]2 + E0∇

2
θθ ℓ̄

zse
iT (θ0) = 0, (B.14)

.e., the integrated likelihood of SST is also information unbiased.

emark B.2. By (B.12) and (B.14), the integrated likelihood of SST in the Neyman–Scott model is {score, information}-
nbiased. However, ℓ̄zseiT is not FOHU because FiT

Remark B.4
= (2θ2

0 )
−1 and −E0∇

2
θθ ℓ̄

zse
iT (θ0) − FiT

(B.13)
= (−2Tθ2

0 )
−1. □

.3. Explicitly adjusted likelihood

The explicitly adjusted loglikelihood for individual i is

p
adj
iT (θ ) := ℓ

p
iT (θ ) + CiT (θ )

(B.2)
= −

1
2
log(2π ) −

1
2
log(θ ) −

1
2Tθ

T∑
Ÿ 2
it + CiT (θ ), (B.15)
t=1
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where

CiT (θ ) := −
T−1 ∑T

t=1 Ÿ
2
it

2(T − 1)θ
. (B.16)

By (B.15), and the fact that Ÿit = Üit ,

∇θp
adj
iT (θ ) = ∇θℓ

p
iT (θ ) +

T−1 ∑T
t=1 Ü

2
it

2(T − 1)θ2 & ∇
2
θθp

adj
iT (θ ) = ∇

2
θθℓ

p
iT (θ ) −

T−1 ∑T
t=1 Ü

2
it

(T − 1)θ3 .

onsequently, by (B.5) and (B.6),

E0∇θp
adj
iT (θ0) = E0∇θℓ

p
iT (θ0) +

E0T−1 ∑T
t=1 Ü

2
it

2(T − 1)θ2
0

= −
1

2θ0T
+

1
2θ0T

= 0, (B.17)

i.e., padjiT is score unbiased. Next, by (B.5) again,

E0∇
2
θθp

adj
iT (θ0) = E0∇

2
θθℓ

p
iT (θ0) −

E0T−1 ∑T
t=1 Ü

2
it

(T − 1)θ3
0

(B.7)
= −

1
2θ2

0
+

1
Tθ2

0
−

1
Tθ2

0
= −

1
2θ2

0
. (B.18)

Moreover,

E0[∇θp
adj
iT (θ0)]2 = E0[∇θℓ

p
iT (θ0)]

2
+

E0[T−1 ∑T
t=1 Ü

2
it ]

2

4(T − 1)2θ4
0

+
E0[∇θℓ

p
iT (θ0)T

−1 ∑T
t=1 Ü

2
it ]

(T − 1)θ2
0

(B.8) & (B.5)
=

1
2Tθ2

0
−

1
4T 2θ2

0
+

T + 1
4T 2(T − 1)θ2

0
+

E0[∇θℓ
p
iT (θ0)

∑T
t=1 Ü

2
it ]

T (T − 1)θ2
0

.

y (B.3) and (B.5),

E0[∇θℓ
p
iT (θ0)

T∑
t=1

Ü2
it ] = −

E0
∑T

t=1 Ü
2
it

2θ0
+

1
2Tθ2

0
E0[

T∑
t=1

Ü2
it ]

2
= −

T − 1
2

+
T 2

− 1
2T

=
T − 1
2T

.

It follows that

E0[∇θp
adj
iT (θ0)]2 =

1
2Tθ2

0
−

1
4T 2θ2

0
+

T + 1
4T 2(T − 1)θ2

0
+

1
2T 2θ2

0
=

1
2Tθ2

0
+

1
2T (T − 1)θ2

0
.

Therefore,

TE0[∇θp
adj
iT (θ0)]2 + E0∇

2
θθp

adj
iT (θ0) =

1
2θ2

0
+

1
2(T − 1)θ2

0
−

1
2θ2

0
=

1
2(T − 1)θ2

0
. (B.19)

Consequently, padjiT is not FOIU.

Remark B.3. p
adj
iT is {score, hessian}-unbiased by (B.17) and (B.18) because FiT

Remark B.4
= (2θ2

0 )
−1. However, (B.19) shows

that padjiT is not FOIU. □

B.4. Target likelihood

Recall that α∗

iT (θ ) solves E0ℓiTα(θ, α∗

iT (θ )) = 0. But E0ℓiTα(θ, αi)
(B.1)
=

∑T
t=1(E0Yit − αi)/Tθ = (αi0 − αi)/θ . Hence,

α∗

iT (θ ) = αi0 for each θ . (B.20)

herefore, in the Neyman–Scott model, the target loglikelihood for individual i is

ℓiT (θ ) := ℓiT (θ, α∗

iT (θ ))
(B.1)
= −

1
2
log(2π ) −

1
2
log(θ ) −

1
2Tθ

T∑
t=1

U2
it . (B.21)

ince ℓiT (θ )
(B.21)
= T−1 log

∏T
t=1 pdfN(0,θ )(Uit ), the target likelihood

∏T
t=1 pdfN(0,θ )(Uit ) satisfies all of the Bartlett identities

ecause
∫
RT

∏T
t=1 pdfN(0,θ )(uit ) dui1 . . . uiT = 1 for each θ .

emark B.4. The target likelihood is {score, information }-unbiased as it satisfies all of the Bartlett identities, and
t is hessian unbiased by definition. Furthermore, E0∇

2
θθℓiT (θ )

(B.21)
=

1
2θ2

−
θ0
θ3
. Therefore, in the Neyman–Scott model,

F := −E ∇
2 ℓ (θ ) = (2θ2)−1

H⇒ F = (2θ2)−1, which confirms (6.9). □
iT 0 θθ iT 0 0 ·T 0
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Appendix C. Proof of Lemma 6.1

To keep the notation for higher order derivatives with respect to θ from becoming unwieldy, assume henceforth that
dim(θ0) = 1. The results in Lemma 6.1 and the remainder of the paper hold even if dim(θ0) > 1 because the rates for the
remainder terms hold coordinatewise, although their proofs become very tedious due to the cumbersome notation.

Proof (Proof of 6.1). Recall that E0LR
p
nT (θ0) := 2nTE0[p·T (θ̂p) − p·T (θ0)]. By Assumption A.3, θ̂p is consistent for θ0 as

n, T → ∞. Hence, expanding p·T (θ̂p) about θ0 and integrating with respect to
∏n

i=1 fYiT |XiT ,αi0;θ0 , we have

E0LR
p
nT (θ0) = 2nTE0[p·T1(θ0)(θ̂p − θ0)] + nTE0[p·T2(θ0)(θ̂p − θ0)2]

+
nT
3

E0[p·T3(θ0)(θ̂p − θ0)3] +
nT
12

E0[p·T4(θ̄ )(θ̂p − θ0)4], (C.1)

where θ̄ lies between θ̂p and θ0. As shown in Appendix F.1, first-order score unbiasedness and first-order information
unbiasedness of piT implies that, as n, T → ∞,

2nTE0[p·T1(θ0)(θ̂p − θ0)] = 2 + Op(
n
T 3 )  

FOSU

+Op(
1
T 2 )  

FOIU

(C.2)

nTE0[p·T2(θ0)(θ̂p − θ0)2] = −1 + Op(
n
T 3 )  

FOSU

+Op(
1
T 2 )  

FOIU

(C.3)

nTE0[p·T3(θ0)(θ̂p − θ0)3] = Op(
1
T 2 )  

FOSU

(C.4)

nTE0[p·T4(θ̄ )(θ̂p − θ0)4] = Op(
1
nT

)  
FOSU

. (C.5)

By (C.1)–(C.5),

E0LR
p
nT (θ0) = 1 + Op(

n
T 3 ) + Op(

1
T 2 ) + Op(

1
nT

)  
FOSU

+Op(
1
T 2 )  

FOIU

(C.6)

= 1 + Op(
n
T 3 [1 +

1
n/T

+
1

n2/T 2 ])  
FOSU

+Op(
1
T 2 )  

FOIU

Ass.A.4(i)
= 1 + Op(

n
T 3 )  

FOSU

+Op(
1
T 2 )  

FOIU

. □

Proof (Proof of (6.2)b). Except for one change, namely, that piT is no longer FOIU, (6.2)b is proved exactly as (6.2)a. The
terms due to the first-order information unbiasedness of piT only occur in the proofs of (C.2) and (C.3), and are clearly
marked. Therefore, the desired result follows from the proof of (6.2)a by modifying these terms as explained in Footnotes
27 and 30.

Proof (Proof of (6.2)c). If piT is not FOSU, then λ·T1(θ0) = Op(T−1) and θ̂p − θ0
(A.3)
= Op(T−1). Moreover, if piT is not FOIU,

hen the right-hand side of (3.2) is Op(T−1). We replicate the proof of (6.2)a, modifying it where necessary to account
or these facts. Let the labels ‘‘SB’’ (short for score bias) and ‘‘IB’’ (short for information bias) tag terms depending on the
core and information bias, respectively. As shown in Appendix F.1, if piT is neither FOSU, nor FOIU, then as n, T → ∞,

2nTE0[p·T1(θ0)(θ̂p − θ0)] = 2 + Op(
n
T
)  

SB

+Op(
1
T
)  

IB

(C.7)

nTE0[p·T2(θ0)(θ̂p − θ0)2] = −1 + Op(
n
T
)  

SB

+Op(
1
T
)  

IB

(C.8)

nTE0[p·T3(θ0)(θ̂p − θ0)3] = Op(
n
T
)  

SB

(C.9)

nTE0[p·T4(θ̄ )(θ̂p − θ0)4] = Op(
n
T 3 )  , (C.10)
SB
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where θ̄ lies between θ̂p and θ0. By (C.1) and (C.7)–(C.10),

E0LR
p
nT (θ0) = 1 + Op(

n
T
) + Op(

n
T 3 )  

SB

+Op(
1
T
)  

IB

= 1 + Op(
n
T
)  

SB

+Op(
1
T
)  

IB

. □

Proof (Proof of (6.2)d). We replicate the proof of (6.2)a, modifying it where necessary to account for the fact that the
target likelihood is a genuine likelihood. Recall that E0LR

target
nT (θ0) := 2nTE0[ℓ·T (θ̂∗) − ℓ·T (θ0)]. By Assumption A.3, θ̂∗ is

consistent for θ0 as n, T → ∞. Hence, expanding ℓ·T (θ̂∗) about θ0 and integrating with respect to
∏n

i=1 fYiT |XiT ,αi0;θ0 , we get

E0LR
target
nT (θ0) = 2nTE0[ℓ·T1(θ0)(θ̂∗

− θ0)] + nTE0[ℓ·T2(θ0)(θ̂∗
− θ0)2]

+
nT
3

E0[ℓ·T3(θ0)(θ̂∗
− θ0)3] +

nT
12

E0[ℓ·T4(θ̄ )(θ̂∗
− θ0)4], (C.11)

where θ̄ lies between θ̂∗ and θ0. As shown in Appendix F.1, since the target likelihood is a genuine likelihood, we have,
as n, T → ∞,

2nTE0[ℓ·T1(θ0)(θ̂∗
− θ0)] = 2 + Op(

1
nT

) (C.12)

nTE0[ℓ·T2(θ0)(θ̂∗
− θ0)2] = −1 + Op(

1
nT

) (C.13)

nTE0[ℓ·T3(θ0)(θ̂∗
− θ0)3] = Op(

1
nT

) (C.14)

nTE0[ℓ·T4(θ̄ )(θ̂∗
− θ0)4] = Op(

1
nT

). (C.15)

By (C.11)–(C.15), E0LR
target
nT (θ0) = 1 + Op( 1

nT ).

Appendix D. Proof of Lemma A.1

Let l·Tk := l·Tk(θ0) for notational convenience. Since the centered derivative

l·Tk =
1
n

n∑
i=1

[piTk − E0piTk] =
1
n

n∑
i=1

liTk =
1
nT

n∑
i=1

T∑
t=1

litk

is a transformation of only finitely many Yit , we can use Davidson (1994, Theorem 14.1) to conclude that l·Tk is conditionally

ai-mixing with supi∈N ai(m)
w.p.1
≲ am. Moreover, the same holds for the products of the centered derivatives in (A.7) and

(A.8).
We now show (A.7). Observe that E0l·Tk1 l·Tk2 = n−2 ∑n

i=1 E0liTk1 liTk2 by independence across i and the fact that E0liTk = 0
for each i by construction. Now,

E0liTk1 liTk2 =
1
T 2

T∑
t=1

T∑
s=1

E0litk1 lisk2

= 1 term of the form
1
T 2

T∑
t=1

E0litk1 litk2 with 1 index

+ 2 terms of the form
1
T 2

T−1∑
t=1

T∑
s=t+1

E0litk1 lisk2 , each with 2 different indices.

Since 0 < m ≤ p H⇒ ∀x ∈ R, |x|m ≤ 1(|x| ≤ 1) + |x|p, we have that

0 < m ≤ 8 H⇒ E0|litk|m
w.p.1
≤ 1 + E0l8itk. (D.1)

Hence,

1
T 2

T∑
t=1

E0|litk1 litk2 |
AM-GM ineq.

≤
1
T 2

T∑
t=1

E0l2itk1 + E0l2itk2
2

w.p.1

(D.1)
≲

1
T 2

T∑
t=1

(1 + E0l8itk1 + E0l8itk2 )

(iv)
≲

1 + di
.

T
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m

w

v

w

w

N
m

Moreover, given ((Xit )t∈N, Ii0, αi0), litk1 is σ (Yi1, . . . , Yit )-measurable, whereas, for s > t , lisk2 is σ (Yi,t+m, Yi,t+m+1, . . .)-
easurable with m := s − t . Hence,

|E0litk1 lisk2 | = |cov0(litk1 , li,t+m,k2 )|
w.p.1
≲ (3 + 2di)a

1/2
i (m)

(iii)
≲ (1 + di)am/2,

here the first inequality follows from a conditional covariance inequality for strong mixing sequences of random

ariables (Prakasa Rao (2009), Eqn. 63) because E0l4itk
(D.1)
≲ 1 + E0l8itk

(iv)
≲ 1 + di. Thus,

1
T 2

T−1∑
t=1

T∑
s=t+1

|E0litk1 lisk2 |
w.p.1
≲

(1 + di)
T 2

T−1∑
t=1

T−t∑
m=1

bm (b := a1/2)

=
(1 + di)

T 2

T−1∑
t=1

(
1 − bT−t

1 − b
)b

≲
(1 + di)

T 2

T−1∑
u=1

(1 − bu) (u := T − t)

=
(1 + di)

T 2 [T − 1 − (
1 − bT−1

1 − b
)b]

≲
1 + di

T
. (D.2)

Combining these results, we have that

E0l·Tk1 l·Tk2 =
1
n2

n∑
i=1

E0liTk1 liTk2
w.p.1
≲

1
n2

n∑
i=1

1 + di
T

(iv)
= Op(

1
nT

),

hich yields (A.7).
Next, we show (A.8). Observe that E0l·Tk1 l·Tk2 l·Tk3 = n−3 ∑n

i=1 E0liTk1 liTk2 liTk3 by independence across i and the fact that
E0liTk = 0 for each i by construction. Now,

E0liTk1 liTk2 liTk3

=
1
T 3

T∑
t=1

T∑
s=1

T∑
r=1

litk1 lisk2 lirk3

= 1 term of the form
1
T 3

T∑
t=1

E0litk1 litk2 litk3 with 1 index

+ 3 terms of the form
1
T 3

T−1∑
t=1

T∑
s=t+1

E0litk1 litk2 lisk3 , each with 2 different indices

+ 1 term of the form
1
T 3

T−2∑
t=1

T−1∑
s=t+1

T∑
r=s+1

E0litk1 lisk2 lirk3 with 3 different indices.

Since

E0|litk1 litk2 litk3 |
AM-GM

≤
1
3
E0[|litk1 |

3
+ |litk2 |

3
+ |litk3 |

3
]
(D.1)
≲ 1 + E0|litk1 |

8
+ E0|litk2 |

8
+ E0|litk3 |

8,

e have that

1
T 3

T∑
t=1

|E0litk1 litk2 litk3 |
(iv)
≤

1 + di
T 2 w.p.1.

ext, given ((Xit )t∈N, Ii0, αi0), litk1 and litk2 are σ (Yi1, . . . , Yit )-measurable, whereas, for s > t , lisk3 is σ (Yi,t+m, Yi,t+m+1, . . .)-
easurable with m := s − t . Hence, as

E0(litk1 litk2 )
4 AM-GM

≤
E0l8itk1 + E0l8itk2 (iv)

≤ di & E0l4i,t+m,k3

(D.1)
≤ 1 + E0l8i,t+m,k3

(iv)
≤ 1 + di,
2
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C

F

w

we have that

|E0litk1 litk2 lisk3 | = |cov0(litk1 litk2 , li,t+m,k3 )|
w.p.1
≲ (1 + di)a

1/2
i (m) (Prakasa Rao, Eqn. 63)

(iii)
≲ (1 + di)am/2.

onsequently, following the argument leading to (D.2),

1
T 3

T−1∑
t=1

T∑
s=t+1

E0litk1 litk2 lisk3 =
1
T 3

T−1∑
t=1

T−t∑
m=1

E0litk1 litk2 li,m+t,k3

w.p.1
≲

1
T 3

T∑
t=1

T∑
m=1

bm ≲
1 + di
T 2 .

inally, note that
T−2∑
t=1

T−1∑
s=t+1

T∑
r=s+1

|E0litk1 lisk2 lirk3 |

=

T−2∑
t=1

T−1∑
s=t+1

T−s∑
∆2=1

|E0litk1 lisk2 li,∆2+s,k3 | (∆2 := r − s ≥ 1)

=

T−2∑
t=1

T−1−t∑
∆1=1

T−∆1−t∑
∆2=1

|E0litk1 li,∆1+t,k2 li,∆2+∆1+t,k3 | (∆1 := s − t ≥ 1)

≤

T∑
t=1

T∑
∆1=1

T∑
∆2=1

|E0litk1 li,∆1+t,k2 li,∆2+∆1+t,k3 |

=

T∑
t=1

T∑
∆1=1

T∑
∆2=1

1(∆1 ≤ ∆2)|E0litk1 li,∆1+t,k2 li,∆2+∆1+t,k3 |

+

T∑
t=1

T∑
∆1=1

T∑
∆2=1

1(∆1 > ∆2)|E0litk1 li,∆1+t,k2 li,∆2+∆1+t,k3 |.

Now,
T∑

t=1

T∑
∆1=1

T∑
∆2=1

1(∆1 ≤ ∆2)|E0litk1 li,∆1+t,k2 li,∆2+∆1+t,k3 |

=

T∑
∆1=1

∆1+T∑
q=∆1+1

T∑
∆2=1

1(∆1 ≤ ∆2)|E0li,q−∆1,k1 liqk2 li,q+∆2,k3 | (q := ∆1 + t)

≤

T∑
∆1=1

∆1+T∑
q=1

T∑
∆2=1

1(∆1 ≤ ∆2)|E0li,q−∆1,k1 liqk2 li,q+∆2,k3 |

≤

2T∑
q=1

T∑
∆2=1

∆2∑
∆1=1

|E0li,q−∆1,k1 liqk2 li,q+∆2,k3 | (1 ≤ ∆1 ≤ ∆2 ≤ T )

=

2T∑
t=1

T∑
∆2=1

∆2∑
∆1=1

|cov0(li,t−∆1,k1 litk2 , li,t+∆2,k3 )|.

Given ((Xit )t∈N, Ii0, αi0), li,t−∆1,k1 and litk2 are σ (Yi1, . . . , Yit )-measurable, whereas li,t+∆2,k3 is σ (Yi,t+∆2 , . . .)-measurable.
Hence, as

E0(li,t−∆1,k1 litk2 )
4 AM-GM

≤
E0l8i,t−∆1,k1

+ E0l8itk2
2

(iv)
≤ di & E0l4i,t+∆2,k3

(D.1)
≤ 1 + E0l8i,t+∆2,k3

(iv)
≤ 1 + di,

e have that

|cov0(li,t−∆1,k1 litk2 , li,t+∆2,k3 )|
w.p.1
≲ (1 + di)a

1/2
i (∆2) (Prakasa Rao, Eqn. 63)

(iii)
≲ (1 + d )a∆2/2.
i
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F

-

Consequently, as

T∑
k=1

kbk =
b(1 − bT )
(1 − b)2

−
TbT+1

1 − b
, (D.3)

we have that
T∑

t=1

T∑
∆1=1

T∑
∆2=1

1(∆1 ≤ ∆2)|E0litk1 li,∆1+t,k2 li,∆2+∆1+t,k3 |

w.p.1
≲ (1 + di)

2T∑
t=1

T∑
∆2=1

∆2∑
∆1=1

b∆2 (b := a1/2)

= (1 + di)2T
T∑

∆2=1

∆2b∆2

(D.3)
≲ (1 + di)[

Tb
(1 − b)2

+
TbT+1

(1 − b)2
+

T 2bT+1

1 − b
].

urthermore,
T∑

t=1

T∑
∆1=1

T∑
∆2=1

1(∆1 > ∆2)|E0litk1 li,∆1+t,k2 li,∆2+∆1+t,k3 |

=

T∑
∆1=1

∆1+T∑
v=∆1+1

T∑
∆2=1

1(∆1 > ∆2)|E0li,v−∆2,k1 li,v+∆1−∆2,k2 li,v+∆1,k3 | (v := ∆2 + t)

≤

T∑
∆1=1

∆1+T∑
v=1

T∑
∆2=1

1(∆1 > ∆2)|E0li,v−∆2,k1 li,v+∆1−∆2,k2 li,v+∆1,k3 |

≤

2T∑
v=1

T∑
∆1=1

∆1∑
∆2=1

|E0li,v−∆2,k1 li,v+∆1−∆2,k2 li,v+∆1,k3 | (1 ≤ ∆2 < ∆1 ≤ T )

=

2T∑
v=1

T∑
∆1=1

∆1∑
∆2=1

|cov0(li,v−∆2,k1 , li,v+∆1−∆2,k2 li,v+∆1,k3 )|.

Given ((Xit )t∈N, Ii0, αi0), li,v−∆2,k1 is σ (Yi1, . . . , Yi,v−∆2 )-measurable, whereas li,v+∆1−∆2,k2 and li,v+∆1,k3 are σ (Yi,v+∆1−∆2 , . . .)

measurable. Hence, as E0(li,v+∆1−∆2,k2 li,v+∆1,k3 )
4

AM-GM & (iv)
≲ di and E0l4i,v−∆2,k1

(D.1) & (iv)
≤ 1 + di, we have

|cov0(li,v−∆2,k1 , li,v+∆1−∆2,k2 li,v+∆1,k3 )|
w.p.1
≲ (1 + di)a

1/2
i (∆1) (Prakasa Rao, Eqn. 63)

(iii)
≲ (1 + di)a∆1/2.

Consequently,

T∑
t=1

T∑
∆1=1

T∑
∆2=1

1(∆1 > ∆2)|E0litk1 li,∆1+t,k2 li,∆2+∆1+t,k3 |

w.p.1
≲ (1 + di)

2T∑
t=1

T∑
∆1=1

∆1∑
∆2=1

b∆1 (b := a1/2)

= (1 + di)2T
T∑

∆1=1

∆1b∆1

(D.3)
≲ (1 + di)[

Tb
(1 − b)2

+
TbT+1

(1 − b)2
+

T 2bT+1

1 − b
].
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L
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S

S
S
S
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It follows that

1
T 3

T−2∑
t=1

T−1∑
s=t+1

T∑
r=s+1

|E0litk1 lisk2 lirk3 |
w.p.1
≲ (1 + di)[

b
T 2(1 − b)2

+
bT+1

T 2(1 − b)2
+

bT+1

T (1 − b)
].

ombining these results, we obtain that

E0l·Tk1 l·Tk2 l·Tk3 =
1
n3

n∑
i=1

E0liTk1 liTk2 liTk3

w.p.1
≲

1
n3

n∑
i=1

(1 + di)
T 2 +

1
n3

n∑
i=1

(1 + di)
T 2 [

b
T 2(1 − b)2

+
bT+1

T 2(1 − b)2
+

bT+1

T (1 − b)
]

=
1

n2T 2

1
n

n∑
i=1

(1 + di) +
1

n2T 2

1
n

n∑
i=1

(1 + di)[
b

(1 − b)2
+

bT+1

(1 − b)2
+

TbT+1

(1 − b)
]

(iv)
= Op(

1
n2T 2 ), (limT→∞TbT = 0)

hich yields (A.8).

ppendix E. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2022.08.011.
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