Real-time fMRI for brain-computer interfacing

Bettina Sorger, Rainer Goebel*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Brain-computer interfaces (BCIs) based on functional magnetic resonance imaging (fMRI) provide an important complement to other noninvasive BCIs. While fMRI has several disadvantages (being nonportable, methodologically challenging, costly, and noisy), it is the only method providing high spatial resolution whole-brain coverage of brain activation. These properties allow relating mental activities to specific brain regions and networks providing a transparent scheme for BCI users to encode information and for real-time fMRI BCI systems to decode the intents of the user. Various mental activities have been used successfully in fMRI BCIs so far that can be classified into the four categories: (a) higher-order cognitive tasks (e.g., mental calculation), (b) covert language-related tasks (e.g., mental speech and mental singing), (c) imagery tasks (motor, visual, auditory, tactile, and emotion imagery), and (d) selective attention tasks (visual, auditory, and tactile attention). While the ultimate spatial and temporal resolution of fMRI BCIs is limited by the physiologic properties of the hemodynamic response, technical and analytical advances will likely lead to substantially improved fMRI BCIs in the future using, for example, decoding of imagined letter shapes at 7T as the basis for more "natural" communication BCIs.

Original languageEnglish
Pages (from-to)289-302
Number of pages14
JournalHandbook of Clinical Neurology
Volume168
DOIs
Publication statusPublished - 2020

Cite this