Human total, basal and activity energy expenditures are independent of ambient environmental temperature

Xueying Zhang, Yosuke Yamada*, Hiroyuki Sagayama*, Philip N Ainslie, Ellen E Blaak, Maciej S Buchowski, Graeme L Close, Jamie A Cooper, Sai Krupa Das, Lara R Dugas, Michael Gurven, Asmaa El Hamdouchi, Sumei Hu, Noorjehan Joonas, Peter Katzmarzyk, William E Kraus, Robert F Kushner, William R Leonard, Corby K Martin, Erwin P MeijerMarian L Neuhouser, Robert M Ojiambo, Yannis P Pitsiladis, Guy Plasqui, Ross L Prentice, Susan B Racette, Eric Ravussin, Leanne M Redman, Rebecca M Reynolds, Susan B Roberts, Luis B Sardinha, Analiza M Silva, Eric Stice, Samuel S Urlacher, Edgar A Van Mil, Brian M Wood, Alexia J Murphy-Alford, Cornelia Loechl, Amy H Luke*, Jennifer Rood*, Dale A Schoeller*, Klaas R Westerterp*, William W Wong*, Herman Pontzer*, John R Speakman*, IAEA DLW Database Consortium

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Lower ambient temperature (Ta) requires greater energy expenditure to sustain body temperature. However, effects of Ta on human energetics may be buffered by environmental modification and behavioral compensation. We used the IAEA DLW database for adults in the USA (n = 3213) to determine the effect of Ta (-10 to +30°C) on TEE, basal (BEE) and activity energy expenditure (AEE) and physical activity level (PAL). There were no significant relationships (p > 0.05) between maximum, minimum and average Ta and TEE, BEE, AEE and PAL. After adjustment for fat-free mass, fat mass and age, statistically significant (p < 0.01) relationships between TEE, BEE and Ta emerged in females but the effect sizes were not biologically meaningful. Temperatures inside buildings are regulated at 18-25°C independent of latitude. Hence, adults in the US modify their environments to keep TEE constant across a wide range of external ambient temperatures.

Original languageEnglish
Article number104682
Number of pages14
JournaliScience
Volume25
Issue number8
DOIs
Publication statusPublished - 19 Aug 2022

Fingerprint

Dive into the research topics of 'Human total, basal and activity energy expenditures are independent of ambient environmental temperature'. Together they form a unique fingerprint.

Cite this