Dispositional Learning Analytics for Supporting Individualized Learning Feedback

Dirk Tempelaar*, Bart Rienties, Quan Nguyen

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review


An important goal of learning analytics (LA) is to improve learning by providing students with meaningful feedback. Feedback is often generated by prediction models of student success using data about students and their learning processes based on digital traces of learning activities. However, early in the learning process, when feedback is most fruitful, trace-data-based prediction models often have limited information about the initial ability of students, making it difficult to produce accurate prediction and personalized feedback to individual students. Furthermore, feedback generated from trace data without appropriate consideration of learners’ dispositions might hamper effective interventions. By providing an example of the role of learning dispositions in an LA application directed at predictive modeling in an introductory mathematics and statistics module, we make a plea for applying dispositional learning analytics (DLA) to make LA precise and actionable. DLA combines learning data with learners’ disposition data measured through for example self-report surveys. The advantage of DLA is twofold: first, to improve the accuracy of early predictions; and second, to link LA predictions with meaningful learning interventions that focus on addressing less developed learning dispositions. Dispositions in our DLA example include students’ mindsets, operationalized as entity and incremental theories of intelligence, and corresponding effort beliefs. These dispositions were inputs for a cluster analysis generating different learning profiles. These profiles were compared for other dispositions and module performance. The finding of profile differences suggests that the inclusion of disposition data and mindset data, in particular, adds predictive power to LA applications.
Original languageEnglish
Article number703773
Number of pages11
JournalFrontiers in Education
Publication statusPublished - 1 Sept 2021


  • Effort beliefs
  • dispositional learning analytics
  • learning analytics
  • learning dispositions
  • mindsets
  • theories of intelligence
  • learning analytics (LA)
  • effort beliefs

Cite this