Development, Establishment, and Validation of a Model for the Mineralization of Periodontium Remodelling Cells: Cementoblasts

Shruti Bhargava, Joachim Jankowski*, Erik Merckelbach, Charlotte Elisa Roth, Rogerio Bastos Craveiro, Michael Wolf

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Chronic kidney disease (CKD) patients undergoing dialysis are at high risk of bone fractures. CKD-induced mineral and bone disorder is extended to periodontal disease due to changes in the ionic composition of saliva in CKD patients, dysregulating mineralization, hindering regeneration and thereby promoting the progression of dental complications. Despite the importance of cementum for overall oral health, the mechanisms that regulate its development and regeneration are not well comprehended, and a lack of sufficient in vitro experimental models has hindered research progress. In this study, the impact of experimental conditions on the calcification of cementoblasts was systematically investigated, aimed at establishing a standardized and validated model for the calcification of cementoblasts. The effects of phosphate, calcium, ascorbic acid, ß-glycerolphosphate, dexamethasone, and fetal calf serum on the calcification process of cementoblasts were analyzed over a wide range of concentrations and time points by investigating calcium content, cell viability, gene expression and kinase activity. Cementoblasts calcified in a concentration- and time-dependent manner with higher concentrations of supplements cause a higher degree of calcification but decreased cell viability. Phosphate and calcium have a significantly stronger effect on cementoblast calcification processes compared to osteogenic supplements: ascorbic acid, ß-glycerolphosphate, and dexamethasone induce calcification over a wide range of osteogenic signalling pathways, with osteopontin being a central target of gene regulation. Conversely, treatment with ascorbic acid, ß-glycerolphosphate, and dexamethasone leads to activating only selected pathways, especially promoting bone sialoprotein expression. The developed and validated cementoblast calcification protocol, incubating up to 60% confluent cementoblasts with 1.9 mmol L of phosphate supplementation for a reasonable, multi-pathway calcification induction and 10 mmol L ß-glycerolphosphate, 75 µmol L ascorbic acid and 10 nmol L dexamethasone for a reasonable osteogenic differentiation-based calcification induction, provides standard in vitro experimental models for better understanding cementoblast function and regeneration.
Original languageEnglish
Article number13829
Number of pages18
JournalInternational Journal of Molecular Sciences
Volume24
Issue number18
DOIs
Publication statusPublished - 7 Sept 2023

Keywords

  • calcification
  • cementoblast
  • cementum
  • diabetic kidney disease
  • periodontium
  • Humans
  • Dental Cementum
  • Calcium
  • Glycerophosphates
  • Osteogenesis
  • Renal Dialysis
  • Periodontium
  • Calcinosis
  • Calcium, Dietary
  • Ascorbic Acid/pharmacology
  • Dexamethasone/pharmacology

Cite this