If you made any changes in Pure these will be visible here soon.

Personal profile

Research interests

Dr. Michel Dumontier is a Distinguished Professor of Data Science at Maastricht University. His research focuses on the development of computational methods for scalable integration and reproducible analysis of FAIR (Findable, Accessible, Interoperable and Reusable) data across scales - from molecules, tissues, organs, individuals, populations to the environment. His group combines semantic web technologies with effective indexing, machine learning and network analysis for drug discovery and personalized medicine. 

Keywords

  • B Philosophy (General)
  • ontology
  • Q Science (General)
  • bioinformatics
  • computational biology
  • semantic web
  • linked data
  • biology
  • molecular biology
  • information
  • databases
  • knowledge representation
  • big data
  • machine learning
  • data mining
  • knowledge discovery

Research Output

Considerations for the Conduction and Interpretation of FAIRness Evaluations

de Miranda Azevedo, R. & Dumontier, M., 1 Jan 2020, In : Data Intelligence. 2, 1-2, p. 285-292

Research output: Contribution to journalArticleAcademicpeer-review

Ten simple rules for making training materials FAIR

Garcia, L., Batut, B., Burke, M. L., Kuzak, M., Psomopoulos, F., Arcila, R., Attwood, T. K., Beard, N., Carvalho-Silva, D., Dimopoulos, A. C., del Angel, V. D., Dumontier, M., Gurwitz, K. T., Krause, R., McQuilton, P., Le Pera, L., Morgan, S. L., Rauste, P., Via, A., Kahlem, P. & 3 others, Rustici, G., van Gelder, C. W. G. & Palagi, P. M., May 2020, In : PLoS Computational Biology. 16, 5, 9 p., 1007854.

Research output: Contribution to journalEditorialAcademicpeer-review

Open Access

The case for a linked data research engine for legal scholars

Moodley, K., Hernández Serrano, P., Zaveri, A., Schaper, M., Dumontier, M. & van Dijck, G., Mar 2020, In : European Journal of Risk Regulation. 11, 1, p. 70-93 24 p.

Research output: Contribution to journalArticleAcademicpeer-review

Open Access

3In-silico Prediction of Synergistic Anti-Cancer Drug Combinations Using Multi-omics Data

Celebi, R., Walk, O. B. D., Movva, R., Alpsoy, S. & Dumontier, M., 20 Jun 2019, In : Scientific Reports. 9, 10 p., 8949.

Research output: Contribution to journalArticleAcademicpeer-review

Open Access
Open Access

Press / Media