TY - JOUR
T1 - Towards sustainable and on-demand adhesives
T2 - Catalyst-free preparation of lignin-based covalent adaptable networks with superior bonding and recyclability
AU - Liu, Jian
AU - Bernaerts, Katrien V.
N1 - Funding Information:
Jian Liu (CSC202006510011) gratefully acknowledges financial support from China Scholarship Council. Henri Becker is acknowledged for help with cutting the steel plates.
Publisher Copyright:
© 2023 The Authors
PY - 2023/12/1
Y1 - 2023/12/1
N2 - Polymer materials today face significant challenges, notably the utilization of green and low-carbon feedstock, the development of eco-friendly preparation processes, and effective material recycling. A promising solution to these challenges lies in the direct synthesis of covalent adaptable networks (CANs) from biomass sources, like lignin. However, the development of unmodified lignin CANs via catalyst-free methods has been a challenging task. Here, we report the successful preparation of lignin-based CANs (TERs) via phthalate monoester transesterification. In this system, lignin (PB1000) serves as hard segment and crosslinker, while the soft segment consists of a biomass diol (PripolTM 2033). By blending the ratio of hard to soft segments, we were able to tune the mechanical properties of the TERs (with lignin content ranging from 10 to 50 wt% and crosslink density increasing from 3600 mol/m3 to 47900 mol/m3). Monoester bonds within the TERs are highly dynamic at elevated temperatures (with an activation energy of 169.2 kJ mol-1), facilitating material recycling without the need for catalysts. Furthermore, TERs can be chemically recycled via alkaline solutions at 80 °C. Notably, we demonstrate a potential application for this work in the form of a TER-based adhesive. In addition to its excellent adhesion properties, the TER adhesive exhibits thermal repair ability, removability, and degradability properties. This work provides a green and sustainable approach towards tackling the challenges associated with recycling of thermoset plastics.
AB - Polymer materials today face significant challenges, notably the utilization of green and low-carbon feedstock, the development of eco-friendly preparation processes, and effective material recycling. A promising solution to these challenges lies in the direct synthesis of covalent adaptable networks (CANs) from biomass sources, like lignin. However, the development of unmodified lignin CANs via catalyst-free methods has been a challenging task. Here, we report the successful preparation of lignin-based CANs (TERs) via phthalate monoester transesterification. In this system, lignin (PB1000) serves as hard segment and crosslinker, while the soft segment consists of a biomass diol (PripolTM 2033). By blending the ratio of hard to soft segments, we were able to tune the mechanical properties of the TERs (with lignin content ranging from 10 to 50 wt% and crosslink density increasing from 3600 mol/m3 to 47900 mol/m3). Monoester bonds within the TERs are highly dynamic at elevated temperatures (with an activation energy of 169.2 kJ mol-1), facilitating material recycling without the need for catalysts. Furthermore, TERs can be chemically recycled via alkaline solutions at 80 °C. Notably, we demonstrate a potential application for this work in the form of a TER-based adhesive. In addition to its excellent adhesion properties, the TER adhesive exhibits thermal repair ability, removability, and degradability properties. This work provides a green and sustainable approach towards tackling the challenges associated with recycling of thermoset plastics.
KW - Covalent adaptable networks
KW - Lignin
KW - On-demand adhesives
KW - Phthalate monoester transesterification
U2 - 10.1016/j.cej.2023.147299
DO - 10.1016/j.cej.2023.147299
M3 - Article
SN - 1385-8947
VL - 477
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 147299
ER -