Towards Affect Recognition through Interactions with Learning Materials

E. Ghaleb*, M. Popa, E. Hortal, S. Asteriadis, G. Weiss, M.A. Wani, M. Kantardzic, M. Sayedmouchaweh, J. Gama, E. Lughofer

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingAcademicpeer-review

109 Downloads (Pure)

Abstract

Affective state recognition has recently attracted a notable amount of attention in the research community, as it can be directly linked to a student's performance during learning. Consequently, being able to retrieve the affect of a student can lead to more personalized education, targeting higher degrees of engagement and, thus, optimizing the learning experience and its outcomes. In this paper, we apply Machine Learning (ML) and present a novel approach for affect recognition in Technology Enhanced Learning (TEL) by understanding learners' experience through tracking their interactions with a serious game as a learning platform. We utilize a variety of interaction parameters to examine their potential to be used as an indicator of the learner's affective state. Driven by the Theory of Flow model, we investigate the correspondence between the prediction of users' self -reported affective states and the interaction features. Cross -subject evaluation using Support Vector Machines (SVMs) on a dataset of 32 participants interacting with the platform demonstrated that the proposed framework could achieve a significant precision in affect recognition. The subject -based evaluation highlighted the benefits of an adaptive personalized learning experience, contributing to achieving optimized levels of engagement.
Original languageEnglish
Title of host publication2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)
PublisherIEEE
Pages372-379
Number of pages8
ISBN (Print)9781538668054
DOIs
Publication statusPublished - 2018
Event17th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA) - FL
Duration: 17 Dec 201820 Dec 2018

Conference

Conference17th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA)
Period17/12/1820/12/18

Keywords

  • Affect Recognition
  • Learning Analytic
  • Interaction Tracking
  • FLOW

Fingerprint

Dive into the research topics of 'Towards Affect Recognition through Interactions with Learning Materials'. Together they form a unique fingerprint.

Cite this