@article{9cacfe772ae641a3b69fda3871608b21,
title = "Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data",
abstract = "Results are presented of searches for continuous gravitational waves from 20 accreting millisecond x-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an unbiased random walk, while the J-statistic maximum-likelihood matched filter tracks the binary orbital phase. Three narrow subbands are searched for each target, centered on harmonics of the measured spin frequency. The search yields 16 candidates, consistent with a false alarm probability of 30% per subband and target searched. These candidates, along with one candidate from an additional target-of-opportunity search done for SAX J1808.4-3658, which was in outburst during one month of the observing run, cannot be confidently associated with a known noise source. Additional follow-up does not provide convincing evidence that any are a true astrophysical signal. When all candidates are assumed nonastrophysical, upper limits are set on the maximum wave strain detectable at 95% confidence, h095%. The strictest constraint is h095%=4.7×10-26 from IGR J17062-6143. Constraints on the detectable wave strain from each target lead to constraints on neutron star ellipticity and r-mode amplitude, the strictest of which are ϵ95%=3.1×10-7 and α95%=1.8×10-5 respectively. This analysis is the most comprehensive and sensitive search of continuous gravitational waves from accreting millisecond x-ray pulsars to date.",
keywords = "DISCOVERY, EMISSION, IGR J17591-2342, J1749.4-2807, NEUTRON-STARS, OPTICAL COUNTERPART, RADIATION, SAX J1748.9-2021, SPIN-DOWN LIMIT, TIMING PROPERTIES",
author = "R. Abbott and T.D. Abbott and F. Acernese and K. Ackley and C. Adams and N. Adhikari and R.X. Adhikari and V.B. Adya and C. Affeldt and D. Agarwal and M. Agathos and K. Agatsuma and N. Aggarwal and O.D. Aguiar and L. Aiello and A. Ain and T. Akutsu and S. Albanesi and A. Allocca and P.A. Altin and A. Amato and C. Anand and S. Anand and A. Ananyeva and S.B. Anderson and W.G. Anderson and M. Ando and T. Andrade and N. Andres and S.V. Angelova and S. Ansoldi and J.M. Antelis and S. Antier and S. Appert and K. Arai and Y. Arai and S. Araki and A. Araya and M.C. Araya and J.S. Areeda and M. Arene and N. Aritomi and N. Arnaud and S.M. Aronson and K.G. Arun and H. Asada and Y. Asali and G. Ashton and Y. Aso and {KAGRA Collaboration} and {LIGO Scientific Collaboration} and {Virgo Collaboration} and Stefan Danilishin and Stefan Hild and Gideon Koekoek and Ayatri Singha and Viola Spagnuolo and Jessica Steinlechner and Sebastian Steinlechner and Andrei Utina and {van den Brand}, Johannes and Jan-Simon Hennig and Margot Hennig",
note = "Funding Information: This material is based upon work supported by NSF{\textquoteright}s LIGO Laboratory which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigaci{\'o}n, the Vicepresid{\`e}ncia i Conselleria d{\textquoteright}Innovaci{\'o}, Recerca i Turisme and the Conselleria d{\textquoteright}Educaci{\'o} i Universitat del Govern de les Illes Balears, the Conselleria d{\textquoteright}Innovaci{\'o}, Universitats, Ci{\`e}ncia i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concert{\'e}es (ARC) and Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO), Belgium, the Paris {\^I}le-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN and CNRS for provision of computational resources. This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research No. 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: No. JP17H06358, No. JP17H06361 and No. JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research No. (S) 17H06133, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF) and Computing Infrastructure Project of KISTI-GSDC in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the Ministry of Science and Technology (MoST) in Taiwan under grants including No. AS-CDA-105-M06, Advanced Technology Center (ATC) of NAOJ, and Mechanical Engineering Center of KEK. This work is supported by NASA through the NICER mission and the Astrophysics Explorers Program and uses data and software provided by the High Energy Astrophysics Science Archive Research Center (HEASARC), which is a service of the Astrophysics Science Division at NASA/GSFC and High Energy Astrophysics Division of the Smithsonian Astrophysical Observatory. Publisher Copyright: {\textcopyright} 2022 American Physical Society.",
year = "2022",
month = jan,
day = "19",
doi = "10.1103/PhysRevD.105.022002",
language = "English",
volume = "105",
journal = "Physical Review D",
issn = "1550-7998",
publisher = "American Physical Society",
number = "2",
}