Abstract
Background and purpose: Dose painting by numbers (DPBN) require a high degree of dose modulation to fulfill the image-based voxel wise dose prescription. The aim of this study was to assess the dosimetric accuracy of 18F-fluoro-2-deoxy-glucose positron emission tomography(18F-FDG-PET)-based DPBN in an anthropomorphic lung phantom using alanine dosimetry.
Materials and methods: A linear dose prescription based on 18F-FDG-PET image intensities within the gross tumor volume (GTV) of a lung cancer patient was employed. One DPBN scheme with low dose modulation (Scheme A; minimum/maximum fraction dose to the GTV 2.92/4.26 Gy) and one with a high modulation (Scheme B; 2.81/4.52 Gy) were generated. The plans were transferred to a computed tomograpy (CT) scan of a thorax phantom based on CT images of the patient. Using volumetric modulated arc therapy (VMAT), DPBN was delivered to the phantom with embedded alanine dosimeters. A plan was also delivered to an intentionally misaligned phantom. Absorbed doses at various points in the phantom were measured by alanine dosimetry.
Results: A pointwise comparison between GTV doses from prescription, treatment plan calculation and VMAT delivery showed high correspondence, with a mean and maximum dose difference of <0.1 Gy and 0.3 Gy, respectively. No difference was found in dosimetric accuracy between scheme A and B. The misalignment caused deviations up to 1 Gy between prescription and delivery.
Conclusion: DPBN can be delivered with high accuracy, showing that the treatment may be applied correctly from a dosimetric perspective. Still, misalignment may cause considerable dosimetric erros, indicating the need for patient immobilization and monitoring.
Original language | English |
---|---|
Pages (from-to) | 101-107 |
Number of pages | 7 |
Journal | Physics & Imaging in Radiation Oncology |
Volume | 21 |
DOIs | |
Publication status | Published - Jan 2022 |
Keywords
- Dose painting by numbers
- Electron paramagnetic resonance
- FEASIBILITY
- HEAD
- IMPACT
- IMRT
- Imaging for radiotherapy
- RADIOTHERAPY
- RECONSTRUCTION
- RESPIRATORY MOTION
- Radiotherapy
- STAGE
- THERAPY
- TRIAL
- Volumetric modulated arc therapy