TY - JOUR
T1 - OTTERS
T2 - a powerful TWAS framework leveraging summary-level reference data
AU - Dai, Qile
AU - Zhou, Geyu
AU - Zhao, Hongyu
AU - Võsa, Urmo
AU - Franke, Lude
AU - Battle, Alexis
AU - Teumer, Alexander
AU - Lehtimäki, Terho
AU - Raitakari, Olli T.
AU - Esko, Tõnu
AU - Agbessi, Mawussé
AU - Ahsan, Habibul
AU - Alves, Isabel
AU - Andiappan, Anand Kumar
AU - Arindrarto, Wibowo
AU - Awadalla, Philip
AU - Beutner, Frank
AU - Jan Bonder, Marc
AU - Boomsma, Dorret I.
AU - Christiansen, Mark W.
AU - Claringbould, Annique
AU - Deelen, Patrick
AU - Favé, Marie Julie
AU - Frayling, Timothy
AU - Gharib, Sina A.
AU - Gibson, Greg
AU - Heijmans, Bastiaan T.
AU - Hemani, Gibran
AU - Jansen, Rick
AU - Kähönen, Mika
AU - Kalnapenkis, Anette
AU - Kasela, Silva
AU - Kettunen, Johannes
AU - Kim, Yungil
AU - Kirsten, Holger
AU - Kovacs, Peter
AU - Krohn, Knut
AU - Kronberg, Jaanika
AU - Kukushkina, Viktorija
AU - Kutalik, Zoltan
AU - Lee, Bernett
AU - Loeffler, Markus
AU - Marigorta, Urko M.
AU - Mei, Hailang
AU - Milani, Lili
AU - Montgomery, Grant W.
AU - Müller-Nurasyid, Martina
AU - Nauck, Matthias
AU - Stehouwer, Coen D.A.
AU - Epstein, Michael P.
AU - Yang, Jinying
AU - eQTLgen Consortium
N1 - Funding Information:
The authors thank Dr Greg Gibson from Georgia Tech for his insightful comments and discussion that help the development and improve the quality of this manuscript. This work was supported by National Institutes of Health grant awards R35GM138313 (Q.D., J.Y.), RF1AG071170 (Q.D., M.P.E.), and Estonian Research Council Grant PUT (PRG1291) for T.E. NIH/NIA grants P30AG10161, R01AG15819, R01AG17917, R01AG30146, R01AG36836, R01AG56352, U01AG32984, U01AG46152, U01AG61356, the Illinois Department of Public Health, the Translational Genomics Research Institute support the generation of the ROS/MAP data led by A.S.B., P.L.D.J. and D.A.B. The Young Finns Study has been financially supported by the Academy of Finland: grants 322098, 286284, 134309 (Eye), 126925, 121584, 124282, 255381, 256474, 283115, 319060, 320297, 314389, 338395, 330809, and 104821, 129378 (Salve), 117797 (Gendi), and 141071 (Skidi), the Social Insurance Institution of Finland, Competitive State Research Financing of the Expert Responsibility area of Kuopio, Tampere and Turku University Hospitals (grant X51001), Juho Vainio Foundation, Paavo Nurmi Foundation, Finnish Foundation for Cardiovascular Research, Finnish Cultural Foundation, The Sigrid Juselius Foundation, Tampere Tuberculosis Foundation, Emil Aaltonen Foundation, Yrjö Jahnsson Foundation, Signe and Ane Gyllenberg Foundation, Diabetes Research Foundation of Finnish Diabetes Association, EU Horizon 2020 (grant 755320 for TAXINOMISIS and grant 848146 for To Aition), European Research Council (grant 742927 for MULTIEPIGEN project), Tampere University Hospital Supporting Foundation, and Finnish Society of Clinical Chemistry and the Cancer Foundation Finland. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
© 2023, The Author(s).
PY - 2023/3/7
Y1 - 2023/3/7
N2 - Most existing TWAS tools require individual-level eQTL reference data and thus are not applicable to summary-level reference eQTL datasets. The development of TWAS methods that can harness summary-level reference data is valuable to enable TWAS in broader settings and enhance power due to increased reference sample size. Thus, we develop a TWAS framework called OTTERS (Omnibus Transcriptome Test using Expression Reference Summary data) that adapts multiple polygenic risk score (PRS) methods to estimate eQTL weights from summary-level eQTL reference data and conducts an omnibus TWAS. We show that OTTERS is a practical and powerful TWAS tool by both simulations and application studies.Here, the authors present a TWAS framework OTTERS that adapts multiple polygenic risk score methods to estimate eQTL weights from summary-level eQTL data. Both simulation and real studies show OTTERS is powerful across a wide range of genetic architectures.
AB - Most existing TWAS tools require individual-level eQTL reference data and thus are not applicable to summary-level reference eQTL datasets. The development of TWAS methods that can harness summary-level reference data is valuable to enable TWAS in broader settings and enhance power due to increased reference sample size. Thus, we develop a TWAS framework called OTTERS (Omnibus Transcriptome Test using Expression Reference Summary data) that adapts multiple polygenic risk score (PRS) methods to estimate eQTL weights from summary-level eQTL reference data and conducts an omnibus TWAS. We show that OTTERS is a practical and powerful TWAS tool by both simulations and application studies.Here, the authors present a TWAS framework OTTERS that adapts multiple polygenic risk score methods to estimate eQTL weights from summary-level eQTL data. Both simulation and real studies show OTTERS is powerful across a wide range of genetic architectures.
U2 - 10.1038/s41467-023-36862-w
DO - 10.1038/s41467-023-36862-w
M3 - Article
C2 - 36882394
SN - 2041-1723
VL - 14
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 1271
ER -