Novel immortal human cell lines reveal subpopulations in the nucleus pulposus

G.G.H. van den Akker, D.A.M. Surtel, A. Cremers, R. Rodrigues-Pinto, S.M. Richardson, J.A. Hoyland, L.W. van Rhijn, T.J.M. Welting, J.W. Voncken*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review


Introduction: Relatively little is known about cellular subpopulations in the mature nucleus pulposus (NP). Detailed understanding of the ontogenetic, cellular and molecular characteristics of functional intervertebral disc (IVD) cell populations is pivotal to the successful development of cell replacement therapies and IVD regeneration. In this study, we aimed to investigate whether phenotypically distinct clonal cell lines representing different subpopulations in the human NP could be generated using immortalization strategies. Methods: Nondegenerate healthy disc material (age range, 8 to 15 years) was obtained as surplus surgical material. Early passage NP monolayer cell cultures were initially characterized using a recently established NP marker set. NP cells were immortalized by simian virus 40 large T antigen (SV40LTag) and human telomerase reverse transcriptase expression. Immortalized cells were clonally expanded and characterized based on collagen type I, collagen type II, alpha 1 (COL2A1), and SRY-box 9 (SOX9) protein expression profiles, as well as on expression of a subset of established in vivo NP cell lineage markers. Results: A total of 54 immortal clones were generated. Profiling of a set of novel NP markers (CD24, CA12, PAX1, PTN, FOXF1 and KRT19 mRNA) in a representative set of subclones substantiated successful immortalization of multiple cellular subpopulations from primary isolates and confirmed their NP origin and/or phenotype. We were able to identify two predominant clonal NP subtypes based on their morphological characteristics and their ability to induce SOX9 and COL2A1 under conventional differentiation conditions. In addition, cluster of differentiation 24 (CD24)-negative NP responder clones formed spheroid structures in various culture systems, suggesting the preservation of a more immature phenotype compared to CD24-positive nonresponder clones. Conclusions: Here we report the generation of clonal NP cell lines from nondegenerate human IVD tissue and present a detailed characterization of NP cellular subpopulations. Differential cell surface marker expression and divergent responses to differentiation conditions suggest that the NP subtypes may correspond to distinct maturation stages and represent distinct NP cell subpopulations. Hence, we provide evidence that the immortalization strategy that we applied is capable of detecting cell heterogeneity in the NP. Our cell lines yield novel insights into NP biology and provide promising new tools for studies of IVD development, cell function and disease.
Original languageEnglish
Article numberR135
JournalArthritis Research & Therapy
Issue number3
Publication statusPublished - 1 Jan 2014

Cite this