Abstract
The development of suitable bioinks with high printability, mechanical strength, biodegradability, and biocompatibility is a key challenge for the clinical translation of 3D constructs produced with bioprinting technologies. In this work, we developed a new type of nanocomposite bioinks containing thiolated mesoporous silica nanoparticles (MSN) that act as active fillers within norbornene-functionalized hydrogels. The MSNs could rapidly covalently crosslink the hydrogels upon exposure to UV light. The mechanical properties of the gels could be modulated from 9.3 to 19.7 kPa with increasing concentrations of MSN. The ability of the MSN to covalently crosslink polymeric networks was, however, significantly influenced by polymer architecture and the number of functional groups. Modification of the outer surface of MSNs with matrix metalloproteinase (MMP) sensitive peptides (MSN-MMPs) resulted in proteinase K and MMP-9 enzyme responsive biodegradable bioinks. Additional cysteine modified RGD peptide incorporation enhanced cell-matrix interactions and reduced the gelation time for bioprinting. The nanocomposite bioinks could be printed by using extrusion-based bioprinting. Our nanocomposite bioinks preserved their shape during in vitro studies and encapsulated MG63 cells preserved their viability and proliferated within the bioinks. As such, our nanocomposite bioinks are promising bioinks for creating bioprinted constructs with tunable mechanical and degradation properties.
Original language | English |
---|---|
Article number | 213647 |
Number of pages | 13 |
Journal | Biomaterials Advances |
Volume | 154 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Nov 2023 |
Keywords
- Bioinks
- Bioprinting
- Matrix metalloproteinase (MMP) degradation
- Mesoporous silica nanoparticles (MSNs)
- Nanocomposites