Interpretable Long-Form Legal Question Answering with Retrieval-Augmented Large Language Models

Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingAcademicpeer-review

21 Downloads (Pure)

Abstract

Many individuals are likely to face a legal dispute at some point in their lives, but their lack of understanding of how to navigate these complex issues often renders them vulnerable. The advancement of natural language processing opens new avenues for bridging this legal literacy gap through the development of automated legal aid systems. However, existing legal question answering (LQA) approaches often suffer from a narrow scope, being either confined to specific legal domains or limited to brief, uninformative responses. In this work, we propose an end-to-end methodology designed to generate long-form answers to any statutory law questions, utilizing a "retrieve-then-read" pipeline. To support this approach, we introduce and release the Long-form Legal Question Answering (LLeQA) dataset, comprising 1,868 expert-annotated legal questions in the French language, complete with detailed answers rooted in pertinent legal provisions. Our experimental results demonstrate promising performance on automatic evaluation metrics, but a qualitative analysis uncovers areas for refinement. As one of the only comprehensive, expertannotated long-form LQA dataset, LLeQA has the potential to not only accelerate research towards resolving a significant real-world issue, but also act as a rigorous benchmark for evaluating NLP models in specialized domains. We publicly release our code, data, and models.
Original languageEnglish
Title of host publicationProceedings of the 38th AAAI Conference on Artificial Intelligence
EditorsJennifer Dy, Sriraam Natarajan, Michael Wooldridge
PublisherAAAI Press
Pages22266-22275
Number of pages10
Volume38
Edition20
ISBN (Print)1-57735-887-2, 978-1-57735-887-9
DOIs
Publication statusPublished - 25 Mar 2024
Event38th AAAI Conference on Artificial Intelligence 2024 - Vancouver, Canada
Duration: 20 Feb 202427 Feb 2024
https://aaai.org/aaai-conference/

Publication series

SeriesProceedings of the AAAI Conference on Artificial Intelligence
Number20
Volume38
ISSN2159-5399

Conference

Conference38th AAAI Conference on Artificial Intelligence 2024
Abbreviated titleAAAI 2024
Country/TerritoryCanada
CityVancouver
Period20/02/2427/02/24
Internet address

Fingerprint

Dive into the research topics of 'Interpretable Long-Form Legal Question Answering with Retrieval-Augmented Large Language Models'. Together they form a unique fingerprint.

Cite this