Incorporation of nanostructured hydroxyapatite and poly(N-isopropylacrylamide) in demineralized bone matrix enhances osteoblast and human mesenchymal stem cell activity

Alessandro Nicoletti*, Paola Torricelli, Adriana Bigi, Piermaria Fornasari, Milena Fini, Lorenzo Moroni

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

7 Citations (Web of Science)


Demineralized bone matrix (DBM) is currently used in many clinical applications for bone augmentation and repair. DBM is normally characterized by the presence of bone morphogenetic proteins. In this study, the authors have optimized methods to obtain DBM under good manufacturing practice, resulting in enhanced bioactivity. The processed DBM can be used alone, together with nanostructured hydroxyapatite (nanoHA), or dispersed in a physiological carrier or hydrogel. In this study, osteoblasts (MG-63) and human bone marrow derived mesenchymal stem cells (hMSCs) were cultured on DBM pastes made in phosphate buffered saline solution or poly(N-isopropylacrylamide) (PNIPAAM) hydrogels with or without nanoHA. The authors observed that the presence of PNIPAAM reduced osteoblast adhesion, while the addition of nanoHA increased osteoblast adhesion, proliferation, interleukin-6 (IL-6) production, and reduced lactate dehydrogenase (LDH) production. Increasing concentrations of PNIPAAM in combination with nanoHA further increased osteoblast proliferation, and decreased IL-6 and LDH production. Incorporation of PNIPAAM in DBM enhanced hMSCs proliferation and collagen type-I production. Furthermore, a combination of PNIPAAM and nanoHA further increased alkaline phosphatase and osteocalcin production in hMSCs, independently from the concentration of PNIPAAM. This study shows that combinations of DBM with nanoHA and PNIPAAM seem to offer a promising route to enhance cell activity and induce osteogenic differentiation.
Original languageEnglish
Article number041001
Issue number4
Publication statusPublished - Dec 2015

Cite this