De Novo Missense Mutations in DHX30 Impair Global Translation and Cause a Neurodevelopmental Disorder

Davor Lessel*, Claudia Schob, Sebastien Kuery, Margot R. F. Reinders, Tamar Harel, Mohammad K. Eldomery, Zeynep Coban-Akdemir, Jonas Denecke, Shimon Edvardson, Estelle Colin, Alexander P. A. Stegmann, Erica H. Gerkes, Marine Tessarech, Dominique Bonneau, Magalie Barth, Thomas Besnard, Benjamin Cogne, Anya Revah-Politi, Tim M. Strom, Jill A. RosenfeldYaping Yang, Jennifer E. Posey, LaDonna Immken, Nelly Oundjian, Katherine L. Helbig, Naomi Meeks, Kelsey Zegar, Jenny Morton, Jolanda H. Schieving, Ana Claasen, Matthew Huentelman, Vinodh Narayanan, Keri Ramsey, Han G. Brunner, Orly Elpeleg, Sandra Mercier, Stephane Bezieau, Christian Kubisch, Tjitske Kleefstra, Stefan Kindler, James R. Lupski, Hans-Juergen Kreienkamp*, DDD Study, C4RCD Res Grp

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

DHX30 is a member of the family of DExH-box helicases, which use ATP hydrolysis to unwind RNA secondary structures. Here we identified six different de novo missense mutations in DHX30 in twelve unrelated individuals affected by global developmental delay (GDD), intellectual disability (ID), severe speech impairment and gait abnormalities. While four mutations are recurrent, two are unique with one affecting the codon of one recurrent mutation. All amino acid changes are located within highly conserved helicase motifs and were found to either impair ATPase activity or RNA recognition in different in vitro assays. Moreover, protein variants exhibit an increased propensity to trigger stress granule (SG) formation resulting in global translation inhibition. Thus, our findings highlight the prominent role of translation control in development and function of the central nervous system and also provide molecular insight into how DHX30 dysfunction might cause a neurodevelopmental disorder.

Original languageEnglish
Pages (from-to)716-724
Number of pages9
JournalAmerican Journal of Human Genetics
Volume101
Issue number5
DOIs
Publication statusPublished - 2 Nov 2017

Keywords

  • INTELLECTUAL DISABILITY
  • STRESS GRANULES
  • RNA GRANULES
  • PROTEIN
  • HELICASE
  • DISEASE
  • GENE
  • DISRUPTION
  • FAMILY
  • MODULE

Cite this