TY - GEN
T1 - How Does Image Quality Affect Computer-Aided Diagnosis of Colorectal Polyps?
AU - Scheeve, Thom
AU - Dehghani, Nikoo
AU - van der Zander, Quirine E.W.
AU - Thijssen, Ayla
AU - Schreuder, Ramon Michel
AU - Masclee, Ad A.M.
AU - Schoon, Erik J.
AU - van der Sommen, Fons
AU - de With, Peter H.N.
N1 - Funding Information:
We greatfully acknowledge the KWF Dutch Cancer Society for funding the COMET-OPTICAL project (Project No. 12639), which guided the presented study. The KWF Dutch Cancer Society did not contribute to the study protocol, data analysis or manuscript writing.
Publisher Copyright:
© 2023 SPIE.
PY - 2023/1/1
Y1 - 2023/1/1
N2 - Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths with rising incidence. Since the survival rate of CRC is correlated with the cancer stage at diagnosis, timely detection and adequate treatment strategies are of utmost importance. Technical innovations such as machine learning (ML) and its application in endoscopy show promising results, but the trust of medical doctors in ML is lacking and the 'black box' nature complicates the understanding of such systems in clinical practice. In contrast to CT and MRI, image quality is a limiting factor in especially endoscopic imaging, as it is very operator dependent. However, the influence of image quality on convolutional (deep) neural networks (CNNs) is insufficiently studied in relation to clinical practice and the usage of medical image data for computer-aided detection and diagnosis (CADx) systems. This paper explores the influence of degraded image quality on the performance of CNNs applied to colorectal polyp (CRP) characterization. Five commonly used CNN architectures, from simple to more complex, are employed with a custom classification head for common CRP characterization. To degrade the quality of images, distortions such as noise, blur, and contrast changes are imposed on the data and their influence on the performance degradation is studied for the mentioned CNN architectures. A large prospectively collected in vivo data set, gathered from four Dutch, both academic and community, hospitals is employed. Results for CRP characterization show that promising CNN-based methods are rather susceptible to noise and blur distortions but reasonably resilient to changes in contrast. This implies that image quality needs monitoring and control prior to directly using image data in CNN models, in order to gain trustworthy use of deep learning (DL) models in a clinical setting. We propose that incorporating an image quality indicator in CADx systems will lead to better acceptance of such systems, and is necessary for the safe implementation of DL applications in clinical practice.
AB - Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths with rising incidence. Since the survival rate of CRC is correlated with the cancer stage at diagnosis, timely detection and adequate treatment strategies are of utmost importance. Technical innovations such as machine learning (ML) and its application in endoscopy show promising results, but the trust of medical doctors in ML is lacking and the 'black box' nature complicates the understanding of such systems in clinical practice. In contrast to CT and MRI, image quality is a limiting factor in especially endoscopic imaging, as it is very operator dependent. However, the influence of image quality on convolutional (deep) neural networks (CNNs) is insufficiently studied in relation to clinical practice and the usage of medical image data for computer-aided detection and diagnosis (CADx) systems. This paper explores the influence of degraded image quality on the performance of CNNs applied to colorectal polyp (CRP) characterization. Five commonly used CNN architectures, from simple to more complex, are employed with a custom classification head for common CRP characterization. To degrade the quality of images, distortions such as noise, blur, and contrast changes are imposed on the data and their influence on the performance degradation is studied for the mentioned CNN architectures. A large prospectively collected in vivo data set, gathered from four Dutch, both academic and community, hospitals is employed. Results for CRP characterization show that promising CNN-based methods are rather susceptible to noise and blur distortions but reasonably resilient to changes in contrast. This implies that image quality needs monitoring and control prior to directly using image data in CNN models, in order to gain trustworthy use of deep learning (DL) models in a clinical setting. We propose that incorporating an image quality indicator in CADx systems will lead to better acceptance of such systems, and is necessary for the safe implementation of DL applications in clinical practice.
KW - colorectal cancer
KW - Deep learning
KW - endoscopic imaging
KW - gastroenterology
KW - image classification
KW - image quality
KW - reproducibility
U2 - 10.1117/12.2654167
DO - 10.1117/12.2654167
M3 - Conference article in proceeding
SN - 9781510660359
VL - 12465
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2023
A2 - Iftekharuddin, Khan M.
A2 - Chen, Weijie
PB - SPIE
T2 - Medical Imaging 2023: Computer-Aided Diagnosis
Y2 - 19 February 2023 through 23 February 2023
ER -