Ex vivo models for research in extracorporeal membrane oxygenation: a systematic review of the literature

Maximilian Valentin Malfertheiner*, Lars Mikael Broman, Leen Vercaemst, Mirko Belliato, Anna Aliberti, Matteo Di Nardo, Justyna Swol, Nicholas Barrett, Federico Pappalardo, Jan Belohlavek, Fabio Silvio Taccone, Jonathan Edward Millar, Lachlan Crawford, Roberto Lorusso, Jacky Y. Suen, John F. Fraser

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

With ongoing progress of components of extracorporeal membrane oxygenation including improvements of oxygenators, pumps, and coating materials, extracorporeal membrane oxygenation became increasingly accepted in the clinical practice. A suitable testing in an adequate setup is essential for the development of new technical aspects. Relevant tests can be conducted in ex vivo models specifically designed to test certain aspects. Different setups have been used in the past for specific research questions. We conducted a systematic literature review of ex vivo models of extracorporeal membrane oxygenation components. MEDLINE and Embase were searched between January 1996 and October 2017. The inclusion criteria were ex vivo models including features of extracorporeal membrane oxygenation technology. The exclusion criteria were clinical studies, abstracts, studies in which the model of extracorporeal membrane oxygenation has been reported previously, and studies not reporting on extracorporeal membrane oxygenation components. A total of 50 studies reporting on different ex vivo extracorporeal membrane oxygenation models have been identified from the literature search. Models have been grouped according to the specific research question they were designed to test for. The groups are focused on oxygenator performance, pump performance, hemostasis, and pharmacokinetics. Pre-clinical testing including use of ex vivo models is an important step in the development and improvement of extracorporeal membrane oxygenation components and materials. Furthermore, ex vivo models offer valuable insights for clinicians to better understand the consequences of choice of components, setup, and management of an extracorporeal membrane oxygenation circuit in any given condition. There is a need to standardize the reporting of pre-clinical studies in this area and to develop best practice in their design.

Original languageEnglish
Pages (from-to)38-49
Number of pages12
JournalPerfusion
Volume35
DOIs
Publication statusPublished - May 2020
Event9th EuroELSO Congress - London, United Kingdom
Duration: 29 Mar 202131 Mar 2021

Keywords

  • extracorporeal membrane oxygenation
  • ex vivo models
  • in vitro
  • extracorporeal life support
  • INSENSIBLE WATER-LOSS
  • LIFE-SUPPORT
  • GAS TRANSFER
  • PULSATILE
  • PERFORMANCE
  • CIRCUIT
  • FLOW
  • PUMP
  • NONPULSATILE
  • PREVALENCE

Cite this