TY - JOUR
T1 - Evaluation of the Effect of an Intraperitoneal Cytostatic-Loaded Supramolecular Hydrogel on Intestinal Anastomotic Healing in an Animal Model
AU - Heuvelings, Danique J I
AU - Wintjens, Anne G W E
AU - Jongen, Audrey C H M
AU - Gielen, Maurits J C A M
AU - Lenaerts, Kaatje
AU - Fransen, Peter-Paul K H
AU - Gijbels, Marion J
AU - van Almen, Geert C
AU - Dankers, Patricia Y W
AU - de Hingh, Ignace H J T
AU - Bouvy, Nicole D
PY - 2023/10/18
Y1 - 2023/10/18
N2 - The prognosis of colorectal cancer patients with peritoneal metastases is very poor. Intraperitoneal drug delivery systems, like supramolecular hydrogels, are being developed to improve local delivery and intraperitoneal residence time of a cytostatic such as mitomycin C (MMC). In this study, we evaluate the effect of intraperitoneal hydrogel administration on anastomotic healing. Forty-two healthy Wistar rats received a colonic end-to-end anastomosis, after which 6 animals received an intraperitoneal injection with saline, 18 with unloaded hydrogel and 18 with MMC-loaded hydrogel. After 7 days, animals were euthanized, and the anastomotic adhesion and leakage score were measured as primary outcome. Secondary outcomes were bursting pressure, histological anastomosis evaluation and body weight changes. Twenty-two rats completed the follow-up period (saline: n = 6, unloaded hydrogel: n = 10, MMC-loaded hydrogel: n = 6) and were included in the analysis. A trend towards significance was found for anastomotic leakage score between the rats receiving saline and unloaded hydrogel after multiple-comparison correction (p = 0.020, α = 0.0167). No significant differences were found for all other outcomes. The main reason for drop-out in this study was intestinal blood loss. Although the preliminary results suggest that MMC-loaded or unloaded hydrogel does not influence anastomotic healing, the intestinal blood loss observed in a considerable number of animals receiving unloaded and MMC-loaded hydrogel implies that the injection of the hydrogel under the studied conditions is not safe in the current rodent model and warrants further optimalisation of the hydrogel.
AB - The prognosis of colorectal cancer patients with peritoneal metastases is very poor. Intraperitoneal drug delivery systems, like supramolecular hydrogels, are being developed to improve local delivery and intraperitoneal residence time of a cytostatic such as mitomycin C (MMC). In this study, we evaluate the effect of intraperitoneal hydrogel administration on anastomotic healing. Forty-two healthy Wistar rats received a colonic end-to-end anastomosis, after which 6 animals received an intraperitoneal injection with saline, 18 with unloaded hydrogel and 18 with MMC-loaded hydrogel. After 7 days, animals were euthanized, and the anastomotic adhesion and leakage score were measured as primary outcome. Secondary outcomes were bursting pressure, histological anastomosis evaluation and body weight changes. Twenty-two rats completed the follow-up period (saline: n = 6, unloaded hydrogel: n = 10, MMC-loaded hydrogel: n = 6) and were included in the analysis. A trend towards significance was found for anastomotic leakage score between the rats receiving saline and unloaded hydrogel after multiple-comparison correction (p = 0.020, α = 0.0167). No significant differences were found for all other outcomes. The main reason for drop-out in this study was intestinal blood loss. Although the preliminary results suggest that MMC-loaded or unloaded hydrogel does not influence anastomotic healing, the intestinal blood loss observed in a considerable number of animals receiving unloaded and MMC-loaded hydrogel implies that the injection of the hydrogel under the studied conditions is not safe in the current rodent model and warrants further optimalisation of the hydrogel.
KW - colorectal cancer
KW - injectable supramolecular hydrogel
KW - intraperitoneal delivery
KW - mitomycin C
KW - peritoneal metastases
U2 - 10.3390/life13102076
DO - 10.3390/life13102076
M3 - Article
SN - 0024-3019
VL - 13
JO - Life
JF - Life
IS - 10
M1 - 2076
ER -