Electronic Nose Sensor Drift Affects Diagnostic Reliability and Accuracy of Disease-Specific Algorithms

Sofie Bosch*, Renée X de Menezes, Suzanne Pees, Dion J Wintjens, Margien Seinen, Gerd Bouma, Johan Kuyvenhoven, Pieter C F Stokkers, Tim G J de Meij, Nanne K H de Boer

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Sensor drift is a well-known disadvantage of electronic nose (eNose) technology and may affect the accuracy of diagnostic algorithms. Correction for this phenomenon is not routinely performed. The aim of this study was to investigate the influence of eNose sensor drift on the development of a disease-specific algorithm in a real-life cohort of inflammatory bowel disease patients (IBD). In this multi-center cohort, patients undergoing colonoscopy collected a fecal sample prior to bowel lavage. Mucosal disease activity was assessed based on endoscopy. Controls underwent colonoscopy for various reasons and had no endoscopic abnormalities. Fecal eNose profiles were measured using Cyranose 320®. Fecal samples of 63 IBD patients and 63 controls were measured on four subsequent days. Sensor data displayed associations with date of measurement, which was reproducible across all samples irrespective of disease state, disease activity state, disease localization and diet of participants. Based on logistic regression, corrections for sensor drift improved accuracy to differentiate between IBD patients and controls based on the significant differences of six sensors (p = 0.004; p < 0.001; p = 0.001; p = 0.028; p < 0.001 and p = 0.005) with an accuracy of 0.68. In this clinical study, short-term sensor drift affected fecal eNose profiles more profoundly than clinical features. These outcomes emphasize the importance of sensor drift correction to improve reliability and repeatability, both within and across eNose studies.

Original languageEnglish
Article number9246
Number of pages12
JournalSensors
Volume22
Issue number23
DOIs
Publication statusPublished - 28 Nov 2022

Keywords

  • Humans
  • Breath Tests
  • Exhalation
  • Reproducibility of Results
  • Volatile Organic Compounds
  • Electronic Nose
  • Inflammatory Bowel Diseases/diagnosis

Fingerprint

Dive into the research topics of 'Electronic Nose Sensor Drift Affects Diagnostic Reliability and Accuracy of Disease-Specific Algorithms'. Together they form a unique fingerprint.

Cite this