Drug targets for cognitive enhancement in neuropsychiatric disorders

T.L. Wallace, T.M. Ballard, B. Pouzet, W.J. Riedel, J.G. Wettstein

Research output: Contribution to journalArticleAcademicpeer-review

81 Citations (Scopus)

Abstract

The investigation of novel drug targets for treating cognitive impairments associated with neurological and psychiatric disorders remains a primary focus of study in central nervous system (CNS) research. Many promising new therapies are progressing through preclinical and clinical development, and offer the potential of improved treatment options for neurodegenerative diseases such as Alzheimer's disease (AD) as well as other disorders that have not been particularly well treated to date like the cognitive impairments associated with schizophrenia (CIAS). Among targets under investigation, cholinergic receptors have received much attention with several nicotinic agonists (alpha 7 and alpha 4 beta 2) actively in clinical trials for the treatment of AD, CIAS and attention deficit hyperactivity disorder (ADHD). Both glutamatergic and serotonergic (5-HT) agonists and antagonists have profound effects on neurotransmission and improve cognitive function in preclinical experiments with animals; some of these compounds are now in proof-of-concept studies in humans. Several histamine H3 receptor antagonists are in clinical development not only for cognitive enhancement, but also for the treatment of narcolepsy and cognitive deficits due to sleep deprivation because of their expression in brain sleep centers. Compounds that dampen inhibitory tone (e.g., GABA(A) alpha 5 inverse agonists) or elevate excitatory tone (e.g., glycine transporter inhibitors) offer novel approaches for treating diseases such as schizophrenia. AD and Down syndrome. In addition to cell surface receptors, intracellular drug targets such as the phosphodiesterases (PDEs) are known to impact signaling pathways that affect long-term memory formation and working memory. Overall, there is a genuine need to treat cognitive deficits associated with many neuropsychiatric conditions as well as an increasingly aging population.

Original languageEnglish
Pages (from-to)130-145
Number of pages16
JournalPharmacology, Biochemistry and Behavior
Volume99
Issue number2
DOIs
Publication statusPublished - Aug 2011

Keywords

  • Memory
  • Learning
  • Attention
  • Acetylcholine
  • Glutamate
  • Glycine
  • GABA
  • Phosphodiesterase
  • Dopamine
  • Serotonin
  • Histamine
  • Alzheimer's
  • Schizophrenia
  • METABOTROPIC GLUTAMATE-RECEPTOR
  • HISTAMINE H-3 RECEPTOR
  • LONG-TERM POTENTIATION
  • POSITIVE ALLOSTERIC MODULATOR
  • CONTAINING GABA(A) RECEPTORS
  • CENTRAL-NERVOUS-SYSTEM
  • MUSCARINIC ACETYLCHOLINE-RECEPTORS
  • ALPHA-7 NICOTINIC RECEPTOR
  • EVENT-RELATED POTENTIALS
  • GILL-WITHDRAWAL REFLEX

Cite this