Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910

R. Abbott*, T. D. Abbott*, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, K. M. AlemanG. Allen, A. Allocca, P. A. Altin, A. Amato, S. Anand, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Ando, S. Angelova, S. Ansoldi, J. M. Antelis, S. Antier, S. Appert, Koya Arai, Koji Arai, Y. Arai, S. Araki, A. Araya, M. C. Araya, J. S. Areeda, M. Arene, N. Aritomi, N. Arnaud, S. M. Aronson, K. G. Arun, H. Asada, Y. Asali, G. Ashton, Y. Aso, KAGRA Collaboration, LIGO Scientific Collaboration, Virgo Collaboration, Stefan Danilishin, Stefan Hild, Gideon Koekoek, Ayatri Singha, Jessica Steinlechner, Sebastian Steinlechner, Andrei Utina, Johannes van den Brand

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

We present a search for quasi-monochromatic gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using Neutron star Interior Composition Explorer (NICER) data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and exhibits fRequent and strong glitches. Analyses of its long-term and interglitch braking indices provide intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of the LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency from PSR J0537-6910. We find no signal, however, and report upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of 2 and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is constrained to less than about 3 x10(-5), which is the third best constraint for any young pulsar.
Original languageEnglish
Article numberL27
Number of pages15
JournalAstrophysical Journal Letters
Volume913
Issue number2
DOIs
Publication statusPublished - 1 Jun 2021

Keywords

  • Gravitational waves
  • SUPERNOVA REMNANT
  • R-MODE
  • BIG GLITCHER
  • 1ST SEARCH
  • ROTATION
  • HISTORY
  • N157B

Cite this