Deep Learning of Multimodal Ultrasound: Stratifying the Response to Neoadjuvant Chemotherapy in Breast Cancer Before Treatment

Jionghui Gu, Xian Zhong, Chengyu Fang, Wenjing Lou, Peifen Fu, Henry C Woodruff, Baohua Wang, Tianan Jiang*, Philippe Lambin

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

BACKGROUND: Not only should resistance to neoadjuvant chemotherapy (NAC) be considered in patients with breast cancer but also the possibility of achieving a pathologic complete response (PCR) after NAC. Our study aims to develop 2 multimodal ultrasound deep learning (DL) models to noninvasively predict resistance and PCR to NAC before treatment. METHODS: From January 2017 to July 2022, a total of 170 patients with breast cancer were prospectively enrolled. All patients underwent multimodal ultrasound examination (grayscale 2D ultrasound and ultrasound elastography) before NAC. We combined clinicopathological information to develop 2 DL models, DL_Clinical_resistance and DL_Clinical_PCR, for predicting resistance and PCR to NAC, respectively. In addition, these 2 models were combined to stratify the prediction of response to NAC. RESULTS: In the test cohort, DL_Clinical_resistance had an AUC of 0.911 (95%CI, 0.814-0.979) with a sensitivity of 0.905 (95%CI, 0.765-1.000) and an NPV of 0.882 (95%CI, 0.708-1.000). Meanwhile, DL_Clinical_PCR achieved an AUC of 0.880 (95%CI, 0.751-0.973) and sensitivity and NPV of 0.875 (95%CI, 0.688-1.000) and 0.895 (95%CI, 0.739-1.000), respectively. By combining DL_Clinical_resistance and DL_Clinical_PCR, 37.1% of patients with resistance and 25.7% of patients with PCR were successfully identified by the combined model, suggesting that these patients could benefit by an early change of treatment strategy or by implementing an organ preservation strategy after NAC. CONCLUSIONS: The proposed DL_Clinical_resistance and DL_Clinical_PCR models and combined strategy have the potential to predict resistance and PCR to NAC before treatment and allow stratified prediction of NAC response.
Original languageEnglish
Article number oyad227
Pages (from-to)e187-e197
Number of pages11
JournalThe Oncologist
Volume29
Issue number2
Early online date5 Sept 2023
DOIs
Publication statusPublished - Feb 2024

Keywords

  • breast cancer
  • deep learning
  • early prediction
  • multimodal ultrasound
  • neoadjuvant chemotherapy

Fingerprint

Dive into the research topics of 'Deep Learning of Multimodal Ultrasound: Stratifying the Response to Neoadjuvant Chemotherapy in Breast Cancer Before Treatment'. Together they form a unique fingerprint.

Cite this