Congestion Games with Variable Demands

Tobias Harks*, Max Klimm*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

We initiate the study of congestion games with variable demands in which the players strategically choose both a nonnegative demand and a subset of resources. The players' incentives to use higher demands are stimulated by nondecreasing and concave utility functions. The payoff for a player is defined as the difference between the utility of the demand and the associated cost on the used resources. Although this class of noncooperative games captures many elements of real-world applications, it has not been studied in this generality in the past. Specifically, we study the fundamental problem of the existence of pure Nash equilibria, PNE for short. We call a set of cost functions consistent if every congestion game with variable demands and cost functions from the set possesses a PNE. We show that only affine and homogeneous exponential functions are consistent. En route, we obtain novel characterizations of consistency for congestion games with fixed but resource-dependent demands.
Original languageEnglish
Pages (from-to)255-277
Number of pages23
JournalMathematics of Operations Research
Volume41
Issue number1
DOIs
Publication statusPublished - 1 Feb 2016

Keywords

  • congestion game
  • pure Nash equilibrium
  • cost function
  • variable demand
  • resource-dependent demand
  • PURE NASH EQUILIBRIA
  • NETWORK DESIGN
  • EXISTENCE
  • FLOW

Fingerprint

Dive into the research topics of 'Congestion Games with Variable Demands'. Together they form a unique fingerprint.

Cite this