Abstract
A set of coalition structures P is farsightedly stable (i) if all possible deviations from any coalition structure p belonging to P to a coalition structure outside P are deterred by the threat of ending worse off or equally well off, (ii) if there exists a farsighted improving path from any coalition structure outside the set leading to some coalition structure in the set, and (iii) if there is no proper subset of P satisfying the first two conditions. A non-empty farsightedly stable set always exists. We provide a characterization of unique farsightedly stable sets of coalition structures and we study the relationship between farsighted stability and other concepts such as the largest consistent set and the von Neumann-Morgenstern farsightedly stable set. Finally, we illustrate our results by means of coalition formation games with positive spillovers.
Original language | English |
---|---|
Pages (from-to) | 286-298 |
Number of pages | 13 |
Journal | Games |
Volume | 1 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Jan 2010 |