TY - CONF
T1 - BayesForSG - a bayesian model for forecasting thermal load in smart grids
AU - Nanda, Rohan
AU - Saguna, Saguna
AU - Mitra, Karan
AU - Åhlund, Christer
N1 - DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2016
Y1 - 2016
N2 - Forecasting the thermal load demand for residential buildings assists in optimizing energy production and developing demand response strategies in a smart grid system. However, the presence of a large number of factors such as outdoor temperature, district heating operational parameters, building characteristics and occupant behaviour, make thermal load forecasting a challenging task. This paper presents an efficient model for thermal load forecast in buildings with different variations of heat load consumption across both winter and spring seasons using a Bayesian Network. The model has been validated by utilizing the realistic district heating data of three residential buildings from the district heating grid of the city of Skellefteå, Sweden over a period of four months. The results from our model show that the current heat load consumption and outdoor temperature forecast have the most inuence on the heat load forecast. Further, our model outperforms state-of-the-art methods for heat load forecasting by achieving a higher average accuracy of 77.97% by utilizing only 10% of the training data for a forecast horizon of 1 hour.
AB - Forecasting the thermal load demand for residential buildings assists in optimizing energy production and developing demand response strategies in a smart grid system. However, the presence of a large number of factors such as outdoor temperature, district heating operational parameters, building characteristics and occupant behaviour, make thermal load forecasting a challenging task. This paper presents an efficient model for thermal load forecast in buildings with different variations of heat load consumption across both winter and spring seasons using a Bayesian Network. The model has been validated by utilizing the realistic district heating data of three residential buildings from the district heating grid of the city of Skellefteå, Sweden over a period of four months. The results from our model show that the current heat load consumption and outdoor temperature forecast have the most inuence on the heat load forecast. Further, our model outperforms state-of-the-art methods for heat load forecasting by achieving a higher average accuracy of 77.97% by utilizing only 10% of the training data for a forecast horizon of 1 hour.
U2 - 10.1145/2851613.2853127
DO - 10.1145/2851613.2853127
M3 - Paper
SP - 2135
EP - 2141
ER -