Baseline gene expression in subcutaneous adipose tissue predicts diet-induced weight loss in individuals with obesity

Ali Oghabian*, Birgitta W. van der Kolk, Pekka Marttinen, Armand Valsesia, Dominique Langin, W. H. Saris, Arne Astrup, Ellen E. Blaak, Kirsi H. Pietilainen

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

BACKGROUND: Weight loss effectively reduces cardiometabolic health risks among people with overweight and obesity, but inter-individual variability in weight loss maintenance is large. Here we studied whether baseline gene expression in subcutaneous adipose tissue predicts diet-induced weight loss success. METHODS: Within the 8-month multicenter dietary intervention study DiOGenes, we classified a low weight-losers (low-WL) group and a high-WL group based on median weight loss percentage (9.9%) from 281 individuals. Using RNA sequencing, we identified the significantly differentially expressed genes between high-WL and low-WL at baseline and their enriched pathways. We used this information together with support vector machines with linear kernel to build classifier models that predict the weight loss classes. RESULTS: Prediction models based on a selection of genes that are associated with the discovered pathways 'lipid metabolism' (max AUC = 0.74, 95% CI [0.62-0.86]) and 'response to virus' (max AUC = 0.72, 95% CI [0.61-0.83]) predicted the weight-loss classes high-WL/low-WL significantly better than models based on randomly selected genes ( < 0.01). The performance of the models based on 'response to virus' genes is highly dependent on those genes that are also associated with lipid metabolism. Incorporation of baseline clinical factors into these models did not noticeably enhance the model performance in most of the runs. This study demonstrates that baseline adipose tissue gene expression data, together with supervised machine learning, facilitates the characterization of the determinants of successful weight loss.
Original languageEnglish
Article numbere15100
Number of pages19
JournalPEERJ
Volume11
Issue number1
DOIs
Publication statusPublished - 24 Mar 2023

Keywords

  • Obesity
  • Weight loss
  • Machine learning
  • Classification
  • Prediction
  • Bioinformatics
  • RNA sequencing
  • Gene expression
  • Transcriptomics
  • Subcutaneous adipose tissue
  • MAINTENANCE
  • PACKAGE

Fingerprint

Dive into the research topics of 'Baseline gene expression in subcutaneous adipose tissue predicts diet-induced weight loss in individuals with obesity'. Together they form a unique fingerprint.

Cite this