Autophagy unleashes noncanonical microRNA functions

Donato Santovito*, Virginia Egea, Kiril Bidzhekov, Lucia Natarelli, Andre Mourao, Xavier Blanchet, Kanin Wichapong, Maria Aslani, Coy Brunssen, Michael Horckmans, Michael Hristov, Arie Geerlof, Esther Lutgens, Mat J. A. P. Daemen, Tilman Hackeng, Christian Ries, Triantafyllos Chavakis, Henning Morawietz, Ronald Naumann, Philipp Von HundelshausenSabine Steffens, Johan Duchene, Remco T. A. Megens, Michael Sattler, Christian Weber*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

11 Citations (Web of Science)

Abstract

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression which act by guiding AGO (argonaute) proteins to target RNA transcripts in the RNA-induced silencing complex (RISC). This macromolecular complex includes multiple additional components (e.g., TNRC6A) that allow for interaction with enzymes mediating inhibition of translation or RNA decay. However, miRNAs also reside in low-molecular weight complexes without being engaged in target repression, and their function in this context is largely unknown. Our recent findings show that endothelial cells exposed to protective high-shear stress or MTORC inhibition activate the macroautophagy/autophagy machinery to sustain viability by promoting differential trafficking ofMIR126strands and by enabling unconventional features ofMIR126-5p. WhereasMIR126-3pis degraded upon autophagy activation,MIR126-5pinteracts with the RNA-binding protein MEX3A to form a ternary complex with AGO2. This complex forms on the autophagosomal surface and facilitates its nuclear localization. Once in the nucleus,MIR126-5pdissociates from AGO2 and establishes aptamer-like interactions with the effector CASP3 (caspase 3). The binding toMIR126-5pprevents dimerization and proper active site formation of CASP3, thus inhibiting proteolytic activity and limiting apoptosis. Disrupting this pathwayin vivoby genetic deletion ofMex3aor by specific deficiency of endothelial autophagy aggravates endothelial apoptosis and exacerbates the progression of atherosclerosis. The direct inhibition of CASP3 byMIR126-5preveals a non-canonical mechanism by which miRNAs can modulate protein function and mediate the autophagy-apoptosis crosstalk.

Original languageEnglish
Pages (from-to)2294-2296
Number of pages3
JournalAutophagy
Volume16
Issue number12
Early online date15 Oct 2020
DOIs
Publication statusPublished - 1 Dec 2020

Keywords

  • microRNA
  • Atherosclerosis
  • Autophagy
  • MEX3A
  • miR-126-5p
  • Noncanonical miRNA functions
  • Endothelial cells

Cite this