TY - JOUR
T1 - Association of a beta-2 adrenoceptor (ADRB2) gene variant with a blunted in vivo lipolysis and fat oxidation
AU - Jocken, J.W.
AU - Blaak, E.E.
AU - Schiffelers, S.L.H.
AU - Arner, P.
AU - van Baak, M.A.
AU - Saris, W.H.
PY - 2007/1/1
Y1 - 2007/1/1
N2 - Background and aims:Obesity is associated with a blunted beta-adrenoceptor-mediated lipolysis and fat oxidation. We investigated whether polymorphisms in codon 16, 27 and 164 of the beta (2)-adrenoceptor gene (ADRB2) and exon 10 of the G protein beta (3)-subunit gene (GNB3) are associated with alterations in in vivo lipolysis and fat oxidation.Design and methods:Sixty-five male and 43 female overweight and obese subjects (body mass index (BMI) range: 26.1-48.4 kg/m(2)) were included. Energy expenditure (EE), respiratory quotient (RQ), circulating free fatty acid (FFA) and glycerol levels were determined after stepwise infusion of increasing doses of the non-selective beta-agonist isoprenaline (ISO).Results:In women, the Arg16 allele of the ADRB2 gene was associated with a blunted increase in circulating FFA, glycerol and a decreased fat oxidation during ISO stimulation. In men, the Arg16 allele was significantly associated with a blunted increase in FFA but not in glycerol or fat oxidation.Conclusion:These results suggest that genetic variation in the ADRB2 gene is associated with disturbances in in vivo beta-adrenoceptor-mediated lipolysis and fat oxidation during beta-adrenergic stimulation in overweight and obese subjects; these effects are influenced by gene-gender interactions.International Journal of Obesity advance online publication, 28 November 2006; doi:10.1038/sj.ijo.0803499.
AB - Background and aims:Obesity is associated with a blunted beta-adrenoceptor-mediated lipolysis and fat oxidation. We investigated whether polymorphisms in codon 16, 27 and 164 of the beta (2)-adrenoceptor gene (ADRB2) and exon 10 of the G protein beta (3)-subunit gene (GNB3) are associated with alterations in in vivo lipolysis and fat oxidation.Design and methods:Sixty-five male and 43 female overweight and obese subjects (body mass index (BMI) range: 26.1-48.4 kg/m(2)) were included. Energy expenditure (EE), respiratory quotient (RQ), circulating free fatty acid (FFA) and glycerol levels were determined after stepwise infusion of increasing doses of the non-selective beta-agonist isoprenaline (ISO).Results:In women, the Arg16 allele of the ADRB2 gene was associated with a blunted increase in circulating FFA, glycerol and a decreased fat oxidation during ISO stimulation. In men, the Arg16 allele was significantly associated with a blunted increase in FFA but not in glycerol or fat oxidation.Conclusion:These results suggest that genetic variation in the ADRB2 gene is associated with disturbances in in vivo beta-adrenoceptor-mediated lipolysis and fat oxidation during beta-adrenergic stimulation in overweight and obese subjects; these effects are influenced by gene-gender interactions.International Journal of Obesity advance online publication, 28 November 2006; doi:10.1038/sj.ijo.0803499.
U2 - 10.1038/sj.ijo.0803499
DO - 10.1038/sj.ijo.0803499
M3 - Article
C2 - 17130852
SN - 0307-0565
VL - 31
SP - 813
EP - 819
JO - International Journal of Obesity
JF - International Journal of Obesity
IS - 5
ER -