An improved automatic system for aiding the detection of colon polyps using deep learning

Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingAcademic

Abstract

Colorectal cancer is responsible for the most cancer deaths after lung cancer. It has been well-established that early detection and removal of polyps can prevent colorectal cancer. It is therefore essential that automated polyp detection has the highest sensitivity and precision possible in order to detect the most cases and prevent unnecessary treatment. We present a deep learning model based on YOLOv3 that was trained to detect polyps. Training made use of the 39308 images of 78 polyps and 393 completely healthy images from the SUN database. The model was subsequently validated using both the public CVC-clinic and ETIS-Larib datasets containing both standard defintion (SD) and high definition (HD) images. The per-image polyp detection sensitivity(precision) was calculated as 91.5(96.6)% and 86.5(94.2)% for the CVC-clinic and Etis-Larib datasets, respectively. These results represent the best-known performance in the validation datasets in comparison with the results of a recent review.
Original languageEnglish
Title of host publicationBHI 2021 - 2021 IEEE EMBS International Conference on Biomedical and Health Informatics, Proceedings
PublisherIEEE
ISBN (Electronic)9781665403580
DOIs
Publication statusPublished - 1 Jan 2021
EventIEEE EMBS International Conference on Biomedical and Health Informatics 2021 - Online, Greece
Duration: 27 Jul 202130 Jul 2021

Conference

ConferenceIEEE EMBS International Conference on Biomedical and Health Informatics 2021
Abbreviated titleBHI 2021
Country/TerritoryGreece
Period27/07/2130/07/21

Keywords

  • Artificial intelligence
  • Colonoscopy
  • Deep learning
  • Polyp detection
  • YOLOv3

Fingerprint

Dive into the research topics of 'An improved automatic system for aiding the detection of colon polyps using deep learning'. Together they form a unique fingerprint.

Cite this