TY - JOUR
T1 - A Minimally Invasive Model of Aortic Stenosis in Swine
AU - Cerqueira, Rui
AU - Moreira-Costa, Liliana
AU - Beslika, Evangelia
AU - Leite-Moreira, André
AU - Silva, Joana
AU - da Costa Martins, Paula A.
AU - Leite-Moreira, Adelino
AU - Lourenço, André
AU - Mendes-Ferreira, Pedro
N1 - Funding Information:
This work was supported and funded under the QREN project 2013/30196, the "la Caixa" Banking Foundation, the Fundação para a Ciência e Tecnologia (FCT) project, LCF/ PR/HP17/52190002. JS and EB were supported by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 813716. PdCM was supported by the Stichting Life Sciences Health (LSH)-TKI project MEDIATOR (LSHM 21016).
Publisher Copyright:
© 2023 JoVE Journal of Visualized Experiments.
PY - 2023/10/1
Y1 - 2023/10/1
N2 - Large animal models of heart failure play an essential role in the development of new therapeutic interventions due to their size and physiological similarities to humans. Efforts have been dedicated to creating a model of pressure-overload induced heart failure, and ascending aortic banding while still supra-coronary and not a perfect mimic of aortic stenosis in humans, closely resembling the human condition. The purpose of this study is to demonstrate a minimally invasive approach to induce left ventricular pressure overload by placing an aortic band, precisely calibrated with percutaneously introduced high-fidelity pressure sensors. This method represents a refinement of the surgical procedure (3Rs), resulting in homogenous trans-stenotic gradients and reduced intragroup variability. Additionally, it enables swift and uneventful animal recovery, leading to minimal mortality rates. Throughout the study, animals were followed for up to 2 months after surgery, employing transthoracic echocardiography and pressure-volume loop analysis. However, longer follow-up periods can be achieved if desired. This large animal model proves valuable for testing new drugs, particularly those targeting hypertrophy and the structural and functional alterations associated with left ventricular pressure overload.
AB - Large animal models of heart failure play an essential role in the development of new therapeutic interventions due to their size and physiological similarities to humans. Efforts have been dedicated to creating a model of pressure-overload induced heart failure, and ascending aortic banding while still supra-coronary and not a perfect mimic of aortic stenosis in humans, closely resembling the human condition. The purpose of this study is to demonstrate a minimally invasive approach to induce left ventricular pressure overload by placing an aortic band, precisely calibrated with percutaneously introduced high-fidelity pressure sensors. This method represents a refinement of the surgical procedure (3Rs), resulting in homogenous trans-stenotic gradients and reduced intragroup variability. Additionally, it enables swift and uneventful animal recovery, leading to minimal mortality rates. Throughout the study, animals were followed for up to 2 months after surgery, employing transthoracic echocardiography and pressure-volume loop analysis. However, longer follow-up periods can be achieved if desired. This large animal model proves valuable for testing new drugs, particularly those targeting hypertrophy and the structural and functional alterations associated with left ventricular pressure overload.
U2 - 10.3791/65780
DO - 10.3791/65780
M3 - Article
SN - 1940-087X
VL - 2003
JO - Journal of visualized experiment
JF - Journal of visualized experiment
IS - 200
M1 - e65780
ER -