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Abstract

We propose an approach for checking the data admissibility of non-stationary multivariate time series

models (VAR or VARMA) through that of their implied individual ARIMA speci�cations. In particular

we show that the presence of di¤erent kinds of common cyclical features restrictions, leading to reduced

rank in the short-run dynamics, explains why we identify parsimonious univariate ARIMA models in

applied research, a paradox that the profession had di¢ culties to explain. We develop a new strategy

for studying interactions between variables prior to possibly modelling them in a multivariate setting.

Indeed, we provide tools to study features of individual time series with the aim to infer features of

the complete system, as individual series keep a print of the system as a whole. The similarity of the

autoregressive roots will be informative about co-movements existing in a vector autoregressive model

as well as convergence between series for di¤erent economies. It will allow us to forecast series, to build

business cycle indices, to unravel trends from cycles in a way that is consistent with the full multivariate

system. Our results justify both the use of an homogeneous panel with hetegoneous cross-correlated vector

moving average (VMA) errors and a factor structure, and the cross-sectional aggregation of ARIMA

series. The advantages of our approach are many: 1) determining co-movements also when we cannot

work with a complete system, 2) enhancing the accuracy of forecasts, 3) the ease of its implementation

in complex situations, 4) the potential empirical studies in many �elds.

JEL: C32

Keywords: Interactions, time series, co-movements, ARIMA, cointegration, common cycles, panel

data

�Corresponding author: Franz C. Palm, Maastricht University, Department of Quantitative Economics, P.O.Box 616, 6200
MD Maastricht, The Netherlands. Email: f.palm@ke.unimaas.nl.

1



1 Introduction

The analysis of interactions between individual phenomena is a key objective of the scienti�c research. A

huge collection of data (national accounts, unemployment for hundreds of categories, prices for thousands of

goods, environmental data on CO2 or on climate, health care, education. . . ) for virtually all countries over

the world is almost instantaneously available at a relatively low cost. At the European level, starting for

six countries, Eurostat now collects and analyzes hundreds of variables for 27 member states. The IMF or

the Worldbank publish statistical information for 150 countries. Hence, the task of researchers is to provide

methods to study interactions between large sets of data.

One strategy to capture interactions and to forecast a large set of time series is to develop models to study

movements in many variables by imposing restrictions. An example is the dynamic factor model approach

by e.g. Forni et al. (2000) and Stock and Watson (2002) but the recent literature on dynamic macro-panels

falls also in this category. Alternatively partial systems are built for country speci�c analyses or for a speci�c

variable such that the GDP for a number of countries. A well known framework to simultaneously analyze

a limited number of time series is the vector autoregressive model (VAR hereafter). In VARs, allowing all

variables to be endogenous is only implementable for small systems, that is to say, in general up to six series

if one has at least quarterly observations and enough data points. Trying to cure the dimensionality problem

in VARs, di¤erent approaches have been proposed such as inter alia Bayesian analyses, simulation based

techniques, separability procedures, automatic selection by deleting non signi�cant coe¢ cients and reduced

rank regressions.

In this paper we take another route. Instead of designing a system which captures interactions we show

how to analyze individual series to extract information on a possibly large system because individual series

keep a print of the system as a whole. Consequently, we propose a new strategy that allows to study

interactions between variables, but without modelling those directly in a multivariate framework. However,

before implementing this strategy, we start to explain in details our view on the compatibility between

univariate and multivariate models. More precisely, this paper �rst extends in Section 2 results of Zellner

and Palm (1974). We show that using VARs with additional restrictions coming from short-run co-movements

(see inter alia Engle and Kozicki (1993), Vahid and Engle (1993)), we give an alternative explanation to

a well known paradox in time series: on the one hand, small multivariate systems theoretically imply non

parsimonious individual ARMA processes while on the other hand estimated univariate models need only

few parameters. This �nding that the presence of co-movements implies that the univariate ARMA schemes

are of low order will be used in a new strategy for the validation of multivariate models through the implied

univariate models. This is illustrated with the relationship between quarterly growth rates of the industrial

production indexes in the US and Canada. The tools we propose have further implications that we can

exploit on moving average components. Section 3 proposes an estimation strategy we evaluate in a small

Monte Carlo experiment. In particular we propose to work on cross sectional aggregates to compute the

common autoregressive parameters. Indeed, an homogeneous panel framework with common autoregressive

coe¢ cients is the by-product of a large VAR model. Section 4 focuses on the link between the growth rates

of the GDP among Latin American economies. A �nal section concludes and gives our plans and hints for
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further research.

2 Multivariate and univariate time series

2.1 The paradox

The literature on the link between multivariate time series and the behavior of univariate variables stresses

the fact that univariate ARIMA analyses could provide tools for the diagnostic of VAR (or VARMA) models.

Important contributions often quoted in this area are the monograph by Quenouille (1957) and papers by

Zellner and Palm (1974, 1975, 2004), Palm and Zellner (1980), Palm (1977) or Maravall and Mathis (1994).

Some textbooks devote a few pages to that issue (e.g. Franses (1998, 198-199) or Lütkepohl (2005, 494-495)).

More formally, let us �rst consider the stationary1 multiple time series process for an n vector of time series

zt = (z1t; : : : ; znt)
0 and without deterministic terms for simplicity:

�(L)zt = �(L)"t; t = 1; : : : ; T; (1)

where �(L) and �(L) are �nite order polynomial coe¢ cient matrices with the usual lag operator L such

that Lzt = zt�1: The sequence of "t is a multivariate white noise process with each "t � N(0;�): The

VARMA in (1) encompasses several useful speci�cations. For example, and using additional normalization

rules on contemporaneous matrices: if �(L) = I we have the vector moving average representation or VMA;

if �(L) = I we have a VAR(p). Let us commence the analysis with the VAR of order p; denoted VAR(p),

one of the cornerstone speci�cation in empirical macroeconometrics:

�(L)zt = "t: (2)

Following Zellner and Palm (1974), the univariate representation of elements of zt can be obtained by

premultiplying both sides of (2) by �(L)adj ; the adjoint matrix (or the adjugate) associated with �(L); in

order to obtain the "�nal equations" representation

det[�(L)]zt = �(L)
adj"t; (3)

where the determinant det[�(L)] is a scalar �nite order polynomial in L: This means that each series is a

�nite order ARMA(p�; q�), with the same lag structure and the same coe¢ cients for the autoregressive part

for every series, although the system was a �nite order VAR(p). For instance for the ith element of zt we

have

det[�(L)]zit = �i�(L)
adj"t = �i(L)uit; (4)

1The generalisation to non-stationarity processes will be considered later in this section.
.
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�i�(L)
adj denoting the ith row of the matrix �(L)adj ; �i(L) is a scalar polynomial in L and uit is a scalar

white noise (innovation) with respect to the past of zit: This recognition and the compatibility of these p�

and q� with n and p of the VAR(p) is the �rst step of a methodology that has been developed in Zellner and

Palm (1974, 1975) as a general modelling strategy called SEMTSA (Structural Economic Modelling Time

Series Analysis). In the �rst stage of that framework, information from univariate schemes is used to restrict

the dynamics of the structural model. However, given the conditions associated with that �rst diagnostic

checking, one must often face a paradoxical feature: a small order VAR with few series already generates

univariate ARMA with large p� and q�, a �nding that is rejected when tested on economic data where one

usually �nds quite parsimonious models with low order autoregressive and moving average polynomials.

Indeed, an n dimensional VAR(p) would imply at most individual ARMA(np; (n� 1)p) processes. This
well know result is simply due to the fact that det[�(L)] contains by construction up to Lnp terms and the

adjoint matrix is a collection (n � 1) � (n � 1) cofactor matrices, each of the matrix elements can contain
the terms 1; L; ::Lp: But whatever the simplicity of that result, this leads to implausible models for most

observed economic time series.2 This is illustrated in the following numerical example.

Example 1 Let us consider the bivariate VAR(2), �(L)zt = (I � �1L � �2L2)zt = "t with the following

numerical values

�(L) =

"
1 0

0 1

#
�
"
�0:1 �0:21
0:7 0:76

#
L�

"
0:3 0:8

0:3 �0:8

#
L2; (5)

the determinant of which is �0:48L4 � 0:189L3 + 0:571L2 � 0:66L+ 1 and the adjoint matrix such that

�(L)adj =

"
1� 0:76L+ 0:8L2 �0:21L+ 0:8L2

0:7L+ 0:3L2 1 + 0:1L� 0:3L2

#
:

This involves that the two implied individual series are ARMA(4,2).

Wallis (1977) has proposed two explanations to solving this paradox. The �rst solution is to unravel

and get rid of common roots in det[�(L)] and �(L)adj : This is not trivial to implement and this is mainly

a technical trick for solving the paradox. The second intuition raised by Wallis is based on the observation

that coe¢ cients close to zero in the implied ARMA might give the feeling that models are more parsimonious

than they theoretically should be. This explanation is always inherent to most of the papers by Zellner and

Palm where economic theories are tested and restrictions are imposed on the system which are compatible

with implied individual ARMA models. The next subsection provides a new explanation for solving that

paradox thanks to the use of short-run co-movements and reduced rank models.

2.2 Our contribution to solving the paradox

We introduce a new framework aimed at understanding the gap between implied individual ARMA models

deduced from VARs (or VARMA) and the estimated ARIMA we get in empirical studies. More speci�cally,

2This result generalizes to individual ARMA(np; (n� 1)p+ q) for VARMA(p; q) processes (see e.g. Lütkepohl (2005)).
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we investigate the implications of the presence of common cyclical features in a multivariate dynamic model

for the order of the marginal processes of the individual series.

The strongest form of common cyclical features is the notion of serial correlation common feature (hence-

forth, SCCF) proposed by Engle and Kozicki (1993) and Vahid and Engle (1993).3 In this framework,

series zt have s SCCF relationships if there exists an n � s matrix � with full column rank and such that
�
0
�(L)zt = �

0
zt = �

0
"t in (2). Hence, SCCF implies that impulse response functions of series in zt are

collinear. Although convenient in terms of parsimony and economic interpretation of business cycles (cycles

will be synchronous in the presence SCCF), assumptions underlying SCCF may be too strong. Indeed SCCF

implies that the matrices �1; �2:::;�p of I ��(L) have a common left null space, a condition that has been
relaxed inter alia in Ahn and Reinsel (1988), Tiao and Tsay (1989), Vahid and Engle (1997), Schleicher

(2007), Hecq, Palm and Urbain (2006), Cubadda and Hecq (2001). These latter authors for instance assume

that there exists an n� s polynomial matrix such that �0(L)zt � (�0+ �1L)0zt = �
0

0"t. This model is a poly-

nomial SCCF of order one or PSCCF(1), a model that can be generalized (see Cubadda and Hecq (2001)

for details) for higher delays of adjustment, a model denoted PSCCF(m):

For simplicity reason, we start with the most parsimonious model, in which there exists a SCCF matrix.

Note again that in the presence of SCCF, the cyclical part of several time series is perfectly synchronized, that

is to say that the ups and downs of di¤erent economies occur at about the same time. We �rst illustrate the

consequences of the presence of one SCCF relationship in a bivariate example with p = 2 before generalizing

to the n dimensional case for any polynomial degree p:

Example 2 Let us consider the polynomial matrix �(L) of the Example 1 but now there exists a SCCF

relationship with a cofeature vector �
0
= (1 : 1) for

�(L) =

"
1 0

0 1

#
�
"
�0:1 �0:2
0:1 0:2

#
L�

"
0:2 0:6

�0:2 �0:6

#
L2: (6)

Because the second and the third coe¢ cient matrices �1 and �2 are of reduced rank with the same left null

space (second rows in both matrices are the opposite of the �rst one), �
0
�(L) = �

0
. The determinant of �(L)

in (6) is 0:4L2 � 0:1L+ 1 and the adjoint matrix is

�(L)adj =

"
�0:2L+ 0:6L2 + 1 �0:2L+ 0:6L2

0:1L� 0:2L2 0:1L� 0:2L2 + 1

#
:

This implies that the two series are at most ARMA(2,2) and not ARMA(4,2) as in the system in Example

1.

More generally Table 1 summarizes the reduction of the individual ARMA degrees obtained due to

common feature restrictions on short-run dynamics. Basically Table 1 reports that multivariate systems

3This model is also known as a scalar component model of order zero or SCM(0,0) using the terminology of Tiao and Tsay
(1989) or white noise direction codependence by Gouriéroux and Peaucelle (1989).
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Table 1: Maximum ARMA orders of univariate series generated by a stationary VAR(p) with cofeature
restrictions

Models AR order MA order

VAR(p) np (n� 1)p
SCCF (n� s)p (n� s)p
PSCCF(1) (n� s)p+ s (n� s)p+ (s� 1)
PSCCF(m) (n� s)p+ sm (n� s)p+ (s� 1)m

with additional commonality deliver low order and therefore empirically more plausible, parsimonious ARMA

models than unrestricted VAR models. For instance, in a small VAR system with four variables and two

lags, implied models are at most ARMA(8,6) while they would reduce to ARMA(2,2) in the presence of a

unique common cycle, that is, with s = 3: This application to Quenouille�s results, who already stressed

the impact of rank de�ciency, is one of the diagnostic tool for data-admissibility we want to formalize and

emphasize. Let us formally prove the results that are reported in Table 1.

Proposition 3 Stationary VAR with s SCCF. In an n-dimensional stationary VAR(p) with s SCCF,

the individual ARMA processes have: (i) AR orders not larger than (n� s)p; (ii) MA orders not larger than
(n� s)p.

Proof. Let us rewrite equation (2) as follows

Q(L)xt = et; (7)

where xt =Mzt, et =M"t, Q(L) =M�(L)M�1, M 0 � [�; �?], and �? is the orthogonal complement. Given
that xt is a non-singular linear transformation of zt, the maximum AR and MA orders of the univariate

representation of elements of zt must be the same as those of elements of xt. Since M�1 = [�; �?], where

� = �(�0�)�1, and �? = �?(�
0
?�?)

�1, we have

Q(L) =

"
Is 0

�0?�(L)� �0?�(L)�?

#
; (8)

from which it easily follows that det[Q(L)] = det[�0?�(L)�?] is a polynomial of order (n � s)p. Hence, the
univariate AR order of each element of zt is, at most, (n� s)p. To prove (ii), let P (L) denote a submatrix
of Q(L) that is formed by deleting one of the �rst s rows and one of the �rst s columns of Q(L). We can

partition P (L) as follows

P (L) =

"
P11 P12

P21(L) P22(L)

#
: (9)

Now, P11 is a (s � 1) � (s � 1) identity matrix, P12 is a (s � 1) � (n � s) matrix of zeros, P21(L) is a
(n�s)� (s�1) polynomial matrix of order p, and P22(L) is a (n�s)� (n�s) polynomial matrix of order p.
Hence, det[P (L)] = det[P11] det[P22(L)], which tells us that det[P (L)] is of order (n� s)p. Since cofactors
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associated with the blocks of Q(L) di¤erent from P11 are polynomials of degree not larger than (n� s)p, we
conclude that the univariate MA order of each element of zt is, at most, (n� s)p.

Proposition 4 Stationary VAR with s PSCCF(1). In an n stationary VAR(p) with s PSCCF(1) we

have that the individual ARMA processes have: (i) AR orders not larger than (n � s)p + s;(ii) MA orders

not larger than (n� s)p+ (s� 1).

Proof. Along the same lines of the previous proof, let us consider R(L) =M0�(L)M
�1
0 , M 0

0 � [�0; �0?],
and M�1

0 � [�0; �0?]. Then, we have

R(L) =

"
�0(L)�0 �01�0?L

�00?�(L)�0 �00?�(L)�0?

#
:

Hence,

det[R(L)] = det[�0(L)�0] det[�
0
0?�(L)�0?]� �00?�(L)�0(�0(L)�0)�1�01�0?L]:

Writing (�0(L)�0)�1 = (�
0(L)�0)

adj=det[�0(L)�0] and substituting it above we get

det[R(L)]det[�0(L)�0]
n�s�1| {z }

s(n�s�1)

= det

8><>:�00?�(L)�0?| {z }
p

det[�0(L)�0]| {z }
s

� �00?�(L)�0| {z }
p

(�0(L)�0)
adj| {z }

s�1

�01�0?L| {z }
1

9>=>;
from which follows that the degree of the polynomial of det[R(L)] is, at most, equal to (n�s)p+s. Regarding
the order of the MA component, let us denote G(L) a submatrix of R(L) that is formed by deleting one of

the �rst s rows and one of the �rst s columns of R(L). We can partition G(L) as follows

G(L) =

"
G11(L) G12L

G21(L) G22(L)

#
; (10)

where G11(L) is a (s� 1)� (s� 1) polynomial matrix of order 1, G12 is a (s� 1)� (n� s) matrix, G21(L)
is a (n � s) � (s � 1) polynomial matrix of order p, and G22(L) is a (n � s) � (n � s) polynomial matrix
of order p. Hence, following a similar reasoning as above, we conclude that the individual MA order is, at

most, (n� s)p+ (s� 1).
These results can be easily generalized for the PSCCF(m) case as reported in Table 1. Also note that

we do not consider a mixed model that can have both SCCF and PSCCF relationships but results can be

trivially deduced from results beneath.

The above propositions can be extended to the case of a I(1) VAR. Let us consider the Vector Error

Correction Model (VECM) representation of variables zt

�(L)�zt = ��
0zt�1 + "t; (11)

where � = (1�L), �(L) = In�
Pp�1

i=1 �iL
i, �i = �

Pp
j=i+1 �j for i = 1; 2; :::; p� 1: � and � are full-column

rank n � r-matrices such that �(1) = ���0 and �0?�(1)�? has full rank. The process zt is cointegrated of
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order (1,1), denoted by CI(1,1), the columns of � span the cointegrating space, the elements of � are the

corresponding adjustment coe¢ cients, see e.g. Johansen (1996).

A well known implication of cointegration is that (n� r�1) unit roots are common to the individual AR
and the MA polynomial. Let us formalize this result in order to later extend it to di¤erent forms of common

cyclical features as well. To do so, consider again equation (2) and apply the transformation

B(L)yt = ut; (12)

where yt = Pzt, ut = P"t, B(L) = P�(L)P�1, and P 0 � [�; �?]. Again, the maximum AR and MA orders

of the univariate representation of elements of zt are the same as those of elements of yt. Since �
0zt is I(0)

and �0?zt is I(1), we can partition B(L) as follows

B(L) =

266664
B11(L)| {z }
r�r

�B12(L)| {z }
r�(n�r)

B21(L)| {z }
(n�r)�r

�B22(L)| {z }
(n�r)�(n�r)

377775
We have that

det[B(L)] = �n�r det[B22(L)] det[B11(L)�B12(L)B22(L)�1B21(L)] � �n�r det[B22(L)] det[B�(L)]

Since B22(1) 6= 0, and B�(1) = B11(1) 6= 0, there are (n�r) the unit roots in det[B(L)]. However, since �0?zt
is I(1), there must be (n� r � 1) unit roots in the univariate MA polynomials of elements of �?zt. Hence,
the AR and MA orders of elements of zt respectively are, at most, n(p� 1) + r + 1 and (n� 1)(p� 1) + r.
For the VECM in (11), the presence of s SCCF�s implies that there exists an n � s full-rank matrix �

such that �0�zt = �
0"t or equivalently

�0�(L) = �0�:

The existence of s PSCCF(1) relationships requires that there exists an n� s full-rank matrix �0 such that
�00�zt + �

0
1�zt�1 = �

0
0"t where �1 = �

0
1�0 or equivalently

�(L)0�(L) = �00�:

Finally, the presence of s weak form SCCF (WF�s) implies that here exists an n� s full-rank matrix ~� such
that ~�

0
�zt � ~�

0
��0zt�1 = ~�

0
"t or equivalently

~�(L)0�(L) = ~�
0
;

where ~�(L) = ~� + ~�1L; ~�1 = �(��0 + In)~� (see Cubadda, 2007).
Table 2 reports the largest ARIMA orders of individual series that are generated by a VECM with

common feature restrictions. Let us formally prove these results.
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Table 2: Maximum ARIMA orders of univariate series generated by a CI(1,1) VAR(p) with cofeature re-
strictions

Models AR order Integration order MA order

VAR(p) n(p� 1) + r 1 (n� 1)(p� 1) + r
SCCF (n� s)(p� 1) + r 1 (n� s)(p� 1) + r
PSCCF(1) (n� s)(p� 1) + r + s 1 (n� s)(p� 1) + r + s� 1
WF (n� s)(p� 1) + r 1 (n� s)(p� 1) + r

Proposition 5 Cointegrated VAR with s SCCF. In a CI(1,1) VAR(p) with s SCCF we have that the

individual ARMA processes of the �rst di¤erences have: (i) AR orders not larger than n(p� 1)+ r; (ii) MA
orders not larger than (n� 1)(p� 1) + r.

Proof. By construction of M , and keeping in mind that �0�(L) = �0�, we notice that

det[Q(L)] = det

"
�Is 0

�0?�(L)� �0?�(L)�?

#
= �s det[�0?�(L)�?]

is a polynomial of order (n � s)p + s. Since det[Q(L)] is a polynomial of the same order as det[�(L)],
we conclude that the univariate AR order of each element of zt is, at most, (n � s)p + s. Note that this
result means that the AR part is of order (n � s)(p � 1) + n: The polynomial degree of the moving average
component is obtained along the same line as in Proposition 3 but with P11� instead of P11 in (9). Hence,

det[P (L)] = det[P11�] det[P22(L)], which tells us that det[P (L)] is of order (n � s)p + (s � 1): Since the
presence of cointegration implies that (n� r � 1) common unit roots cancel out from the individual AR and

the MA polynomials, the result follows.

Proposition 6 Cointegrated VAR with s PSCCF(1). In a CI(1,1) VAR(p) with s PSCCF(1) we have

that the individual ARMA processes of the �rst di¤erences have: (i) AR orders not larger than (n� s)(p�
1) + s+ r; (ii) MA orders not larger than (n� s)(p� 1) + r + s� 1.

Proof. Since it is similar to that of Proposition 4, it is not reported to save space.

Proposition 7 Cointegrated VAR with s WF. In a CI(1,1) VAR(p) with sWF we have that the ARMA

processes of the �rst di¤erences have: (i) AR orders not larger than n(p� 1) + r; (ii) MA order not larger
than (n� 1)(p� 1) + r.

Proof. Let us consider H(L) = fM�(L)fM�1, fM 0 � [e�;e�?], and
H(L) =

" e�0(L)e�(e�0e�)�1 e�01e�?(e�0?e�?)�1Le�0?�(L)e�(e�0e�)�1 e�0?�(L)e�?(e�0?e�?)�1
#

Hence, the proof is entirely analogous to that of Proposition 4 with the H(L) matrix in place of R(L).

The next subsection generalizes some of these results for blocks of countries.
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2.3 Corollaries for block-diagonal VARs and the separation hypothesis

From the discussion above, naturally arises the question about block-diagonal systems, namely about a

situation in which we can disentangle groups of variables4 having many within co-movements but that are

roughly independent to other sets of variables. We make the distinction between two types of models we

illustrate now for SCCF restrictions. For the sake of simplicity, we consider two groups of variables.

The �rst representation is a block-diagonal stationary VAR(p) with SCCF within each block of variables

n1 and n2 respectively; with n1 + n2 = n such that

�(L) =

"
�11(L) 0

0 �22(L)

#
; (13)

where there exist two full column rank matrices with ranks s1 and s2 respectively, with s1 + s2 = s such

that �01�11(L) = �
0
1 and �

0
2�22(L) = �

0
2: This is a system with separability in common features (Hecq, Palm

and Urbain, 2002) with a block-diagonal co-feature matrix such that

�|{z}
n�s

=

26664
�1|{z}

n1�s1

0|{z}
n1�s2

0|{z}
n2�s1

�2|{z}
n2�s2

37775 :
The co-feature matrices �i could be but need not to be identical. From Table 1 it is known that the

maximum degrees for the implied univariate ARMA processes are (n1+n2� s1� s2)p for both AR and MA
components, assuming the same polynomial order p for each group:With di¤erent polynomial orders p1 and

p2; it is (n1 � s1)p1 + (n2 � s2)p2 respectively: However it is clear that these degrees can be further reduced
due to the presence of blocks of zeros. Because this leads to the presence of common roots between the AR

and MA parts, the maximum orders of both AR and MA components are (n1� s1)p1 for the �rst block and
(n2 � s2)p2 for the second group of series.
Due to separation in the form of block-diagonality of �(L); the implied univariate ARMA-processes need

not to have identical AR-polynomials. In fact, the model allows for inter-block AR parameter heterogeneity

and intra-block AR parameter homogeneity. Note that this form of separation is often used when studying

data for a set of countries using a panel-data framework. In some panel-data studies, when a single variable

is analyzed for a set of countries which can be clustered in groups with intergroup block-diagonality of �(L)

combined with intragroup homogeneity so that the univariate ARMA models for a given group have identical

AR polynomials.

The second model is a triangular VAR such that

�(L) =

"
�11(L) �12(L)

0 �22(L)

#
; (14)

4They could for instance correspond to a group of countries.
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with �01[�11(L) : �12(L)] = �01 and �
0
2�22(L) = �02: The situation is similar as before because �? is still

block-diagonal. However fewer cancellations of common roots are observed and the implied models are

(n1 � s1)p1 + (n2 � s2)p2 for block 1 and (n2 � s2)p2 in the block 2.
In this case, the AR polynomials of the two blocks could have factors in common which are identical to

the AR polynomial of the second block. Notice also that under the additional assumption of appropriate

block-diagonality of the contemporaneous covariance matrix �; the n2 � 1 subvector xt of zt = (y0t; x
0
t)
0 is

strongly exogenous. Multiplying the subsystem for yt by the adjoint matrix of �11(L); one obtains the set of

transfer functions (TF) for yt; that is a set of dynamic equations with the same scalar AR polynomial, and

vector moving averages in xt and in "1t; with "it being the subvector of "t corresponding to the partitioning

of zt as (y0t; x
0
t)
0: These TF-equations can be used to study the dynamics of yt or each of its components

given xt and its past and the past of yt.

Obviously, similar results can be obtained for the general case of block-diagonal or block-triangular

systems with k blocks.

2.4 Interpretation in terms of a VMA index model

This subsection further investigates the consequences of the presence of short-run co-movements for the

VMA part of �nal equations. We consequently look at the adjoint matrix of �(L) and emphasize that the

VMA representation has a particular form and follows a sort of multivariate index model (see Reinsel, 1983).

In order to introduce the problem, let us look more closely at the adjoint matrix �(L)adj ; we have computed

in Example 2 for s = 1 SCCF relationship; i.e.

�(L)adj"t =

"
1� 0:2L+ 0:6L2 �:2L+ :6L2

0:1L� 0:2L2 1 + 0:1L� 0:2L2

#"
"1t

"2t

#
:

We can also write the previous expression in terms of coe¢ cient matrices and we observe the presence of a

common right factor, namely of common right null spaces such that

�(L)adj"t =

"
"1t

"2t

#
+

"
�:2
0:1

# h
1 1

i " "1t�1
"2t�1

#
+

"
0:6

�0:2

# h
1 1

i " "1t�2
"2t�2

#

with the obvious numerical observation that �(L)adj�? = �?; �
0
? = (1 : �1): We show now that the VMA

component of (3) has a structure that is analogous to the multivariate index model of Reinsel (1983), and

this leads to the following proposition of which this example is only a particular case.

Proposition 8 In a stationary VAR(p), the existence of s SCCF vectors implies an index model in the MA

matrices of polynomial degree strictly larger than (n� s� 1)p with a common right null space generated by
�: This implies that post-multiplying the adjoint matrix of �(L) by �? reduces the order of the MA part to a

degree of at most (n� s� 1)p instead of (n� s)p:

11



Proof. We denote Q(L) =M 0�(L)M with M � [� : �?]

Q(L) =

"
�0� 0

�0?�(L)� �0?�(L)�?

#
:

Let us compute Q(L)�1 using the de�nition of partitioned matrices, namely

Q(L)�1 =

"
(�0�)�1 0

�(�0?�(L)�?)�1(�0?�(L)�)(�0�)�1 (�0?�(L)�?)
�1

#
:

Because Q(L)�1 = M�1�(L)�1M�10 and we know from orthogonal spaces of M that M�1 = [(�0�)�1�0 :

(�0?�?)
�1�0?] we obtain the inverse of �(L) using �(L)

�1 =MQ(L)�1M 0; namely

�(L)�1 = �(�0�)�1�0 � �?(�0?�(L)�?)�1(�0?�(L)�)(�0�)�1�0

+�?(�
0
?�(L)�?)

�1�0?:

The adjoint matrix is simply �(L)�1 det[�(L)] = �(L)adj. Post-multiplying by �? gives

�(L)adj�? = det[�(L)]�?(�
0
?�(L)�?)

�1�0?�? =

= det[�(L)]�?
(�0?�(L)�?)

adj

det[�0?�(L)�?]
�0?�?

= det[�(L)]�?
(�0?�(L)�?)

adj

det[�0?�?(In�s �	0(L)L�?]
�0?�?

= det[�(L)]�?
(�0?�(L)�?)

adj

det[�0?�?] det[(In�s �	0(L)L�?]
�0?�?

= �?
(�0?�(L)�?)

adj

det[�0?�?]
�0?�?;

where �(L) = [In � �?	0(L)L] the degree of the polynomial in (�0?�(L)�?)adj is (n� s� 1)p:

Corollary 9 In the particular case with n� 1 = s; this combination yields a white noise.

The last result is more a mathematical curiosity than a device to be used in an empirical analysis. We

might think using it if one wants fully e¢ cient estimation of the VARMA for instance. But this shows that

there exists a factor representation in the MA part.

In empirical investigations, this result can partially explain why the MA part is smaller than what it

could be, given theoretical implied models in Tables 1 and 2. An interesting case arises when shocks are

almost singular. Indeed, for instance consider the VMA(1) wt = "t + �1adj"t�1 denoted wt = "t +H1"t�1
to make notation easier. We have the �rst autocovariance given by E(wtw0t�1) = H1�: Because � spans the

right null space of H1; E(wtw0t�1) � 0 in case of near perfect collinearity of "t namely when � = �?K: The
value of the correlation depends on the sign of the cofeature relationship that forms the combination. For

instance, when there exists a negative relationship between the �rst di¤erences of both hypothetical series,

12



�
0
= (1 : 1) and consequently we also have a condition on the disturbances via �?. In the application with the

US and Canada, we have �̂
0

� (1 : �1) and a positive correlation between the residuals of the VAR (around
0.65), this is why the MA(1) was close to being negligible. Of course the relationship between variables is

never collinear, this is why we call it a near coincidental situation.

Remark 10 Note that the expression of the adjoint can be simpli�ed as follows. Let us use

�(L)adj = det[�(L)]�(�0�)�1�0

�det[�(L)]�?(�0?�(L)�?)�1(�0?�(L)�)(�0�)�1�0

+det[�(L)]�?(�
0
?�(L)�?)

�1�0?:

The second line is equal zero and we have

�(L)adj = det[�(L)]�(�0�)�1�0

+det[�(L)]�?(�
0
?�?)

�1�0?�(L)
�1:

To obtain these results we use the properties that (�0?�(L)�?)
�1 = (�0?�?)

�1(In�s � 	0(L)L�?)�1 or to
simplify notations (�0?�?)

�1�(L)�1: We also use the property (�0?�?)
�1�(L)�1�0? = (�0?�?)

�1�?�(L)
�1

(see inter alia Lütkepohl (1996, p. 29)) : To provide a simple check, simply premultiply the adjoint by �(L)

to see that det[�(L)] � det[�(L)][�(�0�)�1�0 + �?(�0?�?)�1�0?]:

2.5 An example: Industrial output growth in Canada and the US

Engle and Kozicki (1993) �nd that there exists a SCCF relationship between the Canadian and the US

quarterly growth rates of output. They have considered a sample from the late 1950s to the late 1990s. We

select the same countries and we use the seasonally adjusted industrial production indexes from OECD main

indicators over the period 1960:Q1-2004:Q3, namely we have 175 observations. Figure 1 plots these series.

The model selection criteria LR, AIC, HQ and SBC lead to selecting p = 2 for the log-levels of the bivariate

processes. We reject the presence of cointegration at usual signi�cance levels using Johansen�s trace test.

Consequently the analysis is performed in �rst di¤erences, namely with quarterly growth rates, with one lag

only (p� 1 = 1):
The estimation by OLS of the VAR(1) in �rst di¤erences delivers (standard errors in brackets)

" d� lnUSAtd� lnCAt

#
=

264 0:003
(0:001)

0:003
(0:001)

375+
264 0:333

(0:088)
0:273
(0:079)

0:265
(0:102)

0:360
(0:092)

375" � lnUSAt�1
� lnCAt�1

#
:

In order to check whether the �rst autoregressive matrix is of reduced rank we compute a SCCF test statistics

using a canonical correlations approach (e.g. Vahid and Engle, 1993) between �zt = (� lnUSAt : � lnCAt)0

and �zt�1: The results are as follows: p � value = 0:31 is the p-value associated with the null hypothesis
(�2(1)) that a linear combination of �zt is orthogonal to the past of �zt. Information criteria also lead to
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Figure 1: Quarterly growth rates of industrial production indexes (industrial sector)
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select s = 1 (Hecq, 2006): The estimated common cyclical feature relationship is � lnUSAt � 1:05� lnCAt:
Without any constraints on the short-run, both implied series should follow ARMA(2,1) processes. However,

the sample ACF and PACF indicate (�gures not reported in the paper) that the orders are probably shorter

and that AR(1) models for industrial production in both countries are more appropriate. For univariate

AR(1) models, the estimated equations have quite similar autoregressive roots

d� lnUSAt = 0:003
(0:001)

+ 0:554
(0:062)

� lnUSAt�1;

d� lnCAt = 0:004
(0:001)

+ 0:533
(0:064)

� lnCAt�1;

where for both equations, the null of no disturbance autocorrelation is not rejected using LM tests. Note

that although parameters are consistently estimated by OLS (or by single equation ML in case there is an

MA component), the standard t�ratios we report in brackets do not lead to the most powerful test because
errors are serially cross-correlated and OLS is not e¢ cient.

One part of our story is con�rmed, that is to say the implied individual ARMA models with additional

commonality in the dynamics have a shorter autoregressive part then we should get without these restrictions.

Moreover the autoregressive roots are similar for both countries. What might look as evidence against our

prediction is the absence of a MA part because both growth rates should be ARMA(1,1).5 First note that

5Using univariate maximum likelihood estimation, the MA(1) component has p-values of 0.16 and 0.32 for respectively the
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these numbers are maximum degree (the meaning of at most) and second that empirical shorter models may

be found due to speci�c coe¢ cient values. For instance this might be linked to phenomena similar to those

presented in Subsection 2.4.

3 Estimation procedures and a small sample evaluation

We address the problem of estimation and testing of single univariate ARMA models and sets of univariate

ARMA models implied by a VAR(p) model in the presence of cofeature restrictions. Univariate ARMA

models can be estimated in a straightforward way by the maximum likelihood method. Therefore, we

identify and estimate by ML for each series individually the parsimonious empirical ARMA(pi; qi) such that

ẑit = �̂i +�
pi
j=1�̂ijzit�j +�

qi
k=1�̂ikûit�k; i = 1 : : : n; t = 1 : : : T; (15)

where �̂i; �̂ij and �̂ik are estimated scalar parameters for series i; i 2 f1; 2; :::; ng; pi and qi are the lag orders
of the ARMA model for the ith series and they might empirically di¤er from series to series. This �rst stage

of the analysis is helpful because we can have a �rst idea about a maximum autoregressive degree p as well

as of the number of series that might share co-movements.6 So doing, we obtain a rough indication, a sort of

bound say, regarding the possible number of common feature vectors, with max(pi) = (n� s)p: Also, if for a
series the autoregressive order di¤ers much from that for the other series, then probably it does not share a

common cycle with these other variables. Indeed, in absence of cancelling and other coincidental cases, the

�ij�s should be the same for all zit�s.

For sets of univariate ARMA models derived from a stationary multivariate ARMA model, Wallis (1977)

has considered maximum likelihood estimation, whereas Palm and Zellner (1980) have considered both

maximum likelihood and e¢ cient two-step estimation. For (di¤erence)-stationary series, the asymptotic

properties of univariate and multivariate estimation and test procedures are standard and known. For unit

root processes with or without cointegration present, when the unit root is not imposed, the asymptotic

procedures generally are non-standard. Whether standard asymptotics hold or not, likelihood and e¢ cient

two-step methods for systems may be cumbersome to implement when the set of variables is large. Therefore,

for empirical work, it will be useful to have tests at the disposal which can be easily implemented and which

lead to reliable inference. Satisfying this need is the objective of this section.

3.1 Estimation of the common autoregressive component and aggregating in-

dividual series

It has been emphasized in Section 2 that the series implied by the VAR must have the same autoregres-

sive coe¢ cients. Consequently we further investigate this restriction using an estimator of the common

US and Canada.
6Note that even though we do not estimate the VAR, and this is in the spirit of what we want to do in practice, we may

nonetheless have an idea about p. For instance with annual data p is usually at most three or four but p = 2 is more likely to
be found; for quarterly data 8 or 10 is a maximum although it is generally less than that in empirical work.
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autoregressive part7 such that

ẑit = �̂i +�
pi
j=1�̂jzit�j +�

qi
k=1�̂ikûit�k; (16)

where �̂j is the jth lag order common to all n: Also note that in (16), the estimated intercept and moving

average parameters are numerically di¤erent from (15) but we leave it like this to avoid introducing new

notations. The intuition underlying the use of (16) is twofold. First if we are under the null hypothesis, then

this is a correct way to impose the commonality observed in di¤erent series. Secondly, under the alternative

namely when including a set of n1 variables that does not belong to the same multivariate process then,

erroneously imposing a common autoregressive root for the n � n1 variables leads to leave some extra
autoregressive terms in the error process. As a result, the detected order of the MA part can be higher than

those observed in individual components. But before doing this we need to get estimates of the common

autoregressive component.

After having identi�ed and estimated the parsimonious empirical ARMA(pi; qi) by ML for each se-

ries individually; one solution is to compute the average of n autoregressive parameters such that �̂
mg

j =

n�1
Pn

i=1 �̂ij ; j = 1:::max(pi): However proceeding this way the homogeneity we have under the null is

ignored. Moreover the estimation of n equations by ML induces a lot of variability in the estimation of that

average.

Instead, because the implied model for det[�(L)] �Zt is at most a MA[(n� s)p)] model in the presence of
SCCF vectors for instance, we further use this observation and estimate an ARMA model for the average of

the n series in the ML estimation of

�zt = �̂� �pij=1�̂
av

j �zt�j +�
qi
k=1�̂k�̂t�k + �̂t; (17)

with �zt = n�1�ni=1zit the simple average of n series. In this second setting we might use a LM test for no

autocorrelation or other graphical tools (i.e. ACF, PACF) on �̂t to check the white noise hypothesis. A

rejection of that null is a sign of misspeci�cation, namely that probably we have included in the analysis a

series that is not implied by the same system and consequently does not have the same �nal equation or

does not have features in common with the other series in the system and therefore has higher degree AR

and MA polynomials.

Cubadda, Hecq and Palm (2007) have shown in simulations that estimating a parsimonious ARMA

model on aggregates is the best strategy for obtaining a common autoregressive coe¢ cient. Indeed, this

procedure not only imposes the common AR parameters but also reduces the MA parts that might be

annihilated by linearly combining the series (see Section 3). Using the averages for Canada and the US with

��zt =
1
2 (� lnUSAt +� lnCAt), the best model (using SBC) for the aggregates is the AR(1)

��zt = 0:016
(3:55)

+ 0:617
(10:40)

��zt�1 + êt;

7Note that to obtain the common AR operator, people have proposed to factor the AR-polynomials for the individual series
into the product of the individual operators and then to cancel common factors (Lütkepohl, 2005, 496).
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where t-ratios are in brackets. LM autocorrelation tests on the residuals do not reject the null at any common

signi�cance level.

Moreover, aggregation can also yield an additional "virtuous" property for such models. Indeed we have

focused in Subsection 2.4 on the right multiplication of the adjoint by a vector or a matrix. More interesting

from an empirical perspective, is the combination on the left, hence cross-sectional aggregation. Let us

denote � = 1
n � with � = (1 1 : : : 1)

0 an n vector of ones, �0 det[�(L)]zt = det[�(L)]�zt computes that average:

This operation can reduce in some circumstances the degree of the MA component. Actually to further

reduce the degree of the MA component we must have � 2 sp(fp) where in the stationary VAR(p) under
SCCF8 , fp is the matrix

zt = �?f
0
1zt�1 + :::+ �?f

0
pzt�p + "t:

Intuitively, in a set of n time series with s SCCF, there exists a combination formed by the column of fp that

reduces the dynamics in the MA component from (n� s)p to (n� s)p� 1. It may be reduced to (n� s)p� 2
(and so on) if for the last two sp(fp) = sp(fp�1): This comes from the fact that the adjoint matrix must

have the form "t = f1?G1�
0"t�1 + ::: + fp?Gp�

0"t�p + "t with Gi full rank normalizing square matrices:

Indeed otherwise the polynomial degree in �(L)�(L)adj > degree det[�(L)] given in Table 1 for instance:

Each premultiplication by a fi cancels the corresponding order in the adjoint. But to reduce the dynamics

to the maximum order we are interested in taking fp:When the last two matrices of the VAR have the same

right null space, i.e. with fp�1 = fp; premultiplying the adjoint by fp, the lag order will be decreased by 2.

Example 11 Let us consider the stationary case with SCCF and with n = 2; s = 1; p = 2 such that the

maximal orders for the AR and the MA components are 2 and the normalizing matrices are I. We have

�(L)�(L)adj = (I � �?f 01L1� �?f 02L2)(I � f1?�0L1� f2?�0L2): This gives I � �?f 01L1� �?f 02L2� �?f 01L1+
�?f

0
1f2?�

0L3 + �?f
0
2f1?�

0L3 � �?f 02L2: Because we have �?f 01f2?�0L3 = ��?f 02f1?�0L3; the degree is indeed
at most 2.

Ideally fp should be estimated, say using a canonical correlation procedure for instance. However not

only this is not always feasible but our objective is to make the analysis as simple as possible. Consequently

we will use the simple average combination � as a pre-testing tool in empirical work. Accepting the null

using � will be considered as a sign of the presence of co-movements (and then that sp(fp) = �) although

rejecting the same hypothesis will not be seen as an absence of such relationships.

Averaging series is �ne under the null that the �nal equations are from the same initial VAR model.

Next we evaluate whether this is also true when we "erroneously substitute" to the group of countries having

common cycles, additional series from another group.

8This is also valid for the VECM.
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3.2 A Monte Carlo experiment on the estimator on aggregates

Let us look at the �nal equations of a VAR(1) with a reduced rank structure

zt = �+�1zt�1 + "t = �+ �?C
0

1zt�1 + "t: (18)

In order to keep �xed the AR and the MA degrees in the n implied models we impose such as in Cubadda,

Hecq and Palm (2007) that there exist s = n � 1 SCCF relationships, leading to n implied ARMA(1,1)
models whatever n instead of ARMA(np; (n � 1)p). Our associated common feature matrix assumes full
short-run convergence between economies (or variables). Indeed, one of the issues we want to emphasize is

to determine a core of countries (or variables) with the maximum number of co-movements. The cofeature

matrix has thus the shape, for instance with n = 5 :

� =

0BBBBBBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

�1 �1 �1 �1

1CCCCCCCA
:

leading to (up to a normalization) �? = (1 : 1 : 1 : 1 : 1)
0
: � is a n dimensional vector of constant terms we

generate from a uniform distribution on (0,1): The factor C1 cannot change at each replication otherwise we

could not compute a bias because implied roots would be di¤erent at each of these replications. In order to

have the same coe¢ cient whatever the odd number of individuals we choose C
0

1 = (0:5;�0:5; 0:5;�0:5; 0:5::::�
0:5; 0:5): This guarantees both the stationarity of the multivariate process and the common value of the AR

root (�i1 = 0:5; i = 1:::n) for every series whatever the number of individuals. To show this we can simply

use the property of partitioned matrices and compute det[I � �1L] when considering the (n� 1)� (n� 1)
upper-left block of (I � �1L). For the covariance matrix of the VAR we use �" = I: This implies cross-

correlated errors wt = �(L)adj"t in the �nal equations because their contemporaneous covariance matrix is

E(wtw
0
t) = I + �1�

0

1: This corresponds to a correlation between the disturbances of the implied equations

of � = 0:55 for all pairs: We use M = 2000 replications and generate T +50 observations by iteration before

dropping the �rst 50 points to initialize the random sequence.

We consider successively n = 5; 11; 23 individuals for T = 50; 100; 250 data points: However we substitute

the last 2nd, 5th and 11th series by an heterogenous diagonal VAR generated from

yt = �
j
1yt + "t; t = 1:::T; j = a; b; c (19)

with successively: �a1 = diag(0:5)�U(�0:125; 0:125) , �b1 = diag(0:25)� U(�0:125; 0:125) and �c1 = diag(0)�
U(�0:125; 0:125): These are heterogeneous AR(1) processes but only �a1 is centered around the same value
as those from the �nal equations, namely 0.5.

Table 3 reports both the empirical bias and RMSE when we combine a system (18) of n1 equations with a
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Table 3: Estimation of a common autoregressive parameter in a mixed system

DGP
Bias rmse

(n1 + n2)=T 50 100 250 50 100 250

3+2 �a1 -0.074 -0.034 -0.010 0.196 0.124 0.068
�b1 -0.100 -0.060 -0.036 0.214 0.139 0.078
�c1 -0.122 -0.078 -0.056 0.225 0.152 0.093

6+5 �a1 -0.088 -0.048 -0.032 0.207 0.124 0.075
�b1 -0.098 -0.058 -0.042 0.213 0.131 0.082
�c1 -0.106 -0.067 -0.048 0.219 0.137 0.087

12+11 �a1 -0.080 -0.041 -0.015 0.207 0.137 0.067
�b1 -0.083 -0.043 -0.018 0.212 0.136 0.068
�c1 -0.085 -0.044 -0.020 0.213 0.137 0.069

Note: A parsimonious empirical ARMA is chosen on the aggregates using SBC. The DGP is such that from

the n = n1 + n2 �nal equations we only consider the �rst n1 set and we add n2 heterogeneous AR(1) processes
centered around 0.5 (a), 0.25 (b) and 0 (c) in �a1 ;�

b
1;�

c
1.

n2�n1 dimensional system (19). We estimate the common autoregressive component using the parsimonious
ARMA model on aggregates. Indeed has been previously explained that although in a VAR(p) the n implied

processes are univariate ARMA(p�; q�), we can �nd a linear combination with ~q < q�: Also Cubadda, Hecq

and Palm (2007) have shown that this estimator has the best properties among the methods considered. It

emerges indeed that the bias increases if we include series with an AR coe¢ cient far from the �nal equation

parameters but less than we might expect. In particular the di¤erence is not so big when n increases. This

goes into the direction to empirically �nd the series coming from the same set of �nal equations. Working on

the serial correlation properties after estimating an autoregressive model is a �rst step. We can also think

of applying a strategy based on using the properties of the covariance matrix of a vector MA-process to

evaluate the likelihood function as we propose in Appendix 1.

4 Analysis of per capita real GDP in Latin America

We study the �rst di¤erences of the log levels of the per capita real gross domestic product (namely the

growth rates) of nine Latin American economies. We have used annual data from 1950 to 2002, i.e. 53

observations. Table 4 reports the name of these countries as well as the univariate ARMA models we have

identi�ed. As far as short-run co-movements are concerned, we can �rst form a group that includes Brazil,

Columbia, Peru and Guatemala. Indeed, the univariate processes for the other countries are white noise.9

9Note that when looking for a set of countries sharing common cycles, white noise processes do not a¤ect the order of the
univariate ARMA processes of the remaining variables. This is because having one more white noise series included leads to
consider the degree (n+1� (s+1))p = (n� s)p for the implied AR and MA parts for instance: But this simpli�es the searching
procedure.
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Table 4: Identi�ed ARMA(p,q) models

Identi�ed components: AR MA

Brazil 1 0
Chile 0 0
Columbia 1 0
Mexico 0 0
Peru 1 0
Venezuela 0 0
Argentina 0 0
Ecuador 0 0
Guatemala 1 0

With these four countries, p = 2 for the log levels was enough to capture the dynamics using a VAR.

Moreover we do not conclude to the existence of long-run relationships between the log of per capita real GDP

using Johansen�s trace tests. Consequently, the VAR(1) for �rst di¤erences implies ARMA(4,3) models for

growth rates. This is not compatible with the parsimonious AR(1) we identify from the data. We interpret

this as a sign of the presence of short-run co-movements. Indeed, ARMA(1,1) and AR(1) are compatible

with s = 3 short-run relationships: If we estimate ARMA processes for the averages of the four countries the

most parsimonious model is the AR(1)

��zt = 0:057
(2:45)

+ 0:531
(4:37)

��zt�1 + êt

in which we do not see any sign of autocorrelation in êt.10

From these results we conjecture that there exists strong short-run co-movements characterized by a

unique common cycle within that group of four countries. Both the individual ARMA orders and the

absence of any autocorrelation in the residuals of the aggregated estimated equation lead to this conviction.

To have an alternative look at this issue (it is possible in this case because n is small) we report in Table

5 SCCF test statistics for the number of cofeatures using a canonical correlation approach as well as the

value of information criteria. p � val and p � valcor refer to the p � value associated with respectively the
asymptotic and the small sample corrected test statistics (Hecq, Palm and Urbain, 2006 and Hecq 2006).

AIC, HQ and SC are the obvious acronyms for model selection criteria. It is shown with simulations in Hecq

(2006) that both HQ and SC give a correct rank in large samples while AIC underestimates s: It emerges

from Table 5 that using the four countries we cannot reject the hypothesis that there exist s = 3 SCCF

10Note that the MG would produce a smaller coe¢ cient as the Monte Carlo experiment illustrates with �̂
MG
1 = 0:431:
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Table 5: SCCF test statistics
s = 0 s � 1 s � 2 s � 3 s = 4

p-value - 0.54 0.23 0.06 <0.001
p-valuecor - 0.56 0.27 0.09 <0.001
AIC -28.974 -29.006 -29.022 -29.003 -28.729
HQ -28.742 -28.789 �28.848 -28.902 -28.729
SC -28.368 -28.438 -28.567 -28.738 -28.729

relationships. The normalized cofeature relationships are8>><>>:
� lnColt � 0:523� lnBrat
� lnGuatt � 0:880� lnBrat
� lnPerut � 0:933� lnBrat

:

However, our speci�c to general approach allows us to directly consider the series that might have a

cyclical component in common. Starting with the VAR for so many variables, it would not have been

possible to determine such a group and other countries could have been added (see Hecq et al. 2006 and

Hecq 2006 with the same kind of data). Moreover our approach is robust to misspeci�cation of the number

of cointegrating vectors, which is not the case with usual tests. For instance in this case, the same canonical

correlation tests statistics with a misspeci�ed cointegrating rank r = 1 gives s = 2:

5 Conclusion

This paper has proposed a new strategy to study the presence of co-movements in large set of series without

the need to develop and jointly estimate a large complex multivariate model for these series. The strategy

exploits the information about common dynamics present in individual ARMA estimations. Many further

developments are currently under investigations such as inter alia the development of panel unit root tests

and the extension to seasonal models. Moreover, the small sample and asymptotic properties must be more

deeply evaluated.

The tools we introduce can be extended in further research. For instance they allow to work on co-

movements between variables or on convergence among economies, to forecast series, to build indices such as

business cycle components, to unravel trends from cycles,... as if we had a full parametric system with many

variables. The advantages of our approach are: 1) its feasibility when it is not possible to jointly analyze a

complete system or when we prefer to work using a sub-system, 2) the accuracy of forecasts, 3) the ease of its

implementation when a large number of jointly dependent variables has to be studied in complex situations,

4) the potential empirical applications in many �elds.
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7 Appendix 1: The covariance matrix

In order to obtain the covariance matrix, let us construct for every series the deviation from the population

autoregressive part wit = zit � �i � �pij=1�ijzit�j where we know that the wit are �nite order MA(q). We
can denote det[�(L)]zt � �i = wt with then wt = �(L)adj"t = H(L)"t where for every variable we have

wit = Hi�(L)"t = �i(L)uit (20)

= uit + �i1uit�1 + : : :+ �iqiuit�qi ; (21)

where Hi�(L) = �i�(L)adj is the ith row of �(L)adj : We will focus on the VMA(1) model in this paper for

simplicity reasons and because this is the model that we �nd in most empirical applications. In this case

�(L)adj is of degree one and denoted �adj1 = H1 with wt = "t +H1"t�1: Consequently for t 6= t0; variances
and autocovariances are E(wtw0t) = � + H1�H

0
1 � D, E(wtw0t�1) = H1�; E(wt�1w

0
t) = �H 0

1 � P and

E(wtw
0
t�l) = 0 for l > 1: Collecting all these matrices for t = 1:::T gives a possibly large nT � nT matrix

W =

0BBBBBBBBB@

D P 0 0 � � � 0

P D P 0
. . .

...

0 P
. . .

. . . 0
...

. . .
. . .

. . . P 0

0 � � � 0 P D

1CCCCCCCCCA
: (22)

We do not observe nor estimate H1 in the complete VMA. Also we do not have the "t of the VAR but only

estimates of the individual moving average parameters and error terms uit: However given the equivalence

(20) we propose to obtain an estimate of E(ww0) using the empirical counterpart D̂ = 1
T �ŵtŵ

0
t and P̂ =

1
T �ŵtŵ

0
t�1 to consistently estimate the unknown block-bands in (22) with ŵt the i-th element being ŵit =

zit � �̂i � �pij=1�̂ijzit�j :
Remains the problem of manipulating the block-band symmetric matrixW, for instance to invert it or

to obtain its determinant. In the special case where the autocovariances are zero (i.e. H1� = 0) we have

a block diagonal matrix that can be manipulated like in Zellner (1962), namely det[W] =�Tt=1 det[D]. But

more interesting is the more general VMA(1) case in whichW is a block-triagonal symmetric matrix (22).

Because W is positive de�nite, its complete LU-decomposition W = (P+T)T
�1
(T+P

0
) exists. P =:

blocktridiagfP; 0; 0g; T =: blockdiagfTkg and

Tk =

(
D; k = 1

D � PT�1k�1P
0
; k = 2:::T:

:

This is a recursive algorithm that only involves inversion of n � n matrices and consequently is feasible
even for large n and T after D and P have been replaced by consistent estimates D̂ and P̂ . We use this

decomposition to compute determinants. Indeed because (P+T) and (T+P0) are block-triangular and T
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block-diagonal we have

det[W] = det[T] =
TY
k=1

det[Tk]: (23)

However and although the parameters of individual ARMA models as well as the average coe¢ cient on the

aggregates are consistently estimated by ML, we cannot use traditional techniques such as the likelihood ratio

or information criteria to compare det[W]
res and det[W]

unr where "res" and "unr" refer to the determinants

of the covariance matrix (23) obtained respectively under restrictions on the autoregressive component or

free from these restrictions. A theoretical reason is that a likelihood ratio for the multivariate model with

parameters evaluated at consistent but not necessary e¢ cient system estimates it is not a maximum likelihood

ratio. Therefore, its asymptotic distribution has to be determined under the null. Solutions are the use of

system maximum likelihood or of e¢ cient two-step estimators of the VARMA as proposed in Palm and

Zellner (1980). However, not only is this not feasible for large n; implementing that approach is rather

intricate.

Let us consider a special case and denote by det[W]
ind the determinant of the covariance matrix obtained

when the residuals are constructed from individual estimation and det[W]
av when the residuals ŵit =

zit � �̂i � �pij=1�̂
av

j zit�j are taken using common coe¢ cient estimates from the averaged series: The two

models will most of the time be non-nested because it can happens that a fraction of the n series are

ARMA(1,1) and the model for the aggregates is an AR(1). Consequently det[W]
ind is not necessarily

smaller than det[W]
av. Also the use of information criteria is useless because the di¤erence between these

two determinants might be very large so that the adjustment by the number of parameters has no e¤ect.

To illustrate this point let us compute the frequency with which det[W]
ind is smaller than det[W]

av

by means of a small Monte Carlo experiment and compute the frequency with which � = (det[W]
av �

det[W]
ind
) � 0: If individual estimations are close to each other and close to the estimate on aggregates,

then the proportion � should be di¤erent from 50%. To illustrate this hypothesis we simply use a sign test

on 1000 replications from (18) in which we both estimate each equation separately and on the aggregates

using S =
P1000

i=1 u(�); where u(�) = 1 if � � 0 and u(�) = 0 if � > 0: The standardized statistics is

�S =
(S � 0:5� 1000)

0:5
p
1000

� N(0; 1)

Table 6 reports the frequency S=1000 as well as the value of the statistics �S in two di¤erent settings for

det[W]
ind
: In the �rst case each series is taken from the true parameter �i1 = 0:5 for i = 1:::n: In the second

case coe¢ cients of n ARMA(1,1) models are estimated and we have �i1 = �̂i1 for i = 1:::n: In both of these

two situations, the coe¢ cient on the averaged series is obtained using the best parsimonious ARMA on the

aggregates. It emerges from Table 6 that the frequency with which one model is preferred is roughly 0.5

in most cases. But there are signi�cant deviations for small n (n = 5) when the coe¢ cients are estimated

from the individual series. Obviously, in practice we do not have many times the same process in order to

compute �S: We leave for further investigation a bootstrap test on this issue.
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Table 6: Frequencies with which aggregates coe¢ cient model is chosen and sign test

S
1000

�S
n=T 50 100 250 50 100 250

5 �i1 = 0:5 vs �̂1 0.505 0.514 0.509 0.31 0.88 0.56
11 0.507 0.478 0.510 0.44 -1.39 0.63
23 0.521 0.532 0.483 1.32 2.02 -1.07

5 �̂i1 vs �̂1 0.588 0.594 0.590 5.56 5.94 5.69
11 0.489 0.483 0.561 -0.69 -1.07 3.85
23 0.477 0.487 0.506 -1.45 -0.82 -0.37
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