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Chapter 1

1. General Introduction

Rapidly perceiving the emotional content of a face is an important skill for suc-
cessful social behavior, since it helps to evaluate the states and intentions of
others and to adapt future behavior accordingly. One of the ways in which the
visual system captures environmental information, like facial expressions, is in
terms of luminance variations that vary across space. High spatial frequencies
(HSF) represent abrupt, small luminance changes, corresponding to sharp edges
and fine perceptual detail. Low spatial frequencies (LSF), on the other hand,
represent global changes in luminance, and provide information about the gen-
eral shape, proportions and large contours of objects in our visual environment
(Bar, 2004; Goffaux & Rossion, 2006; Morrison & Schyns, 2001). Several studies
in adults have indicated that particularly LSF information plays an important
role in the rapid processing of facial expressions (e.g. Pourtois, Dan, Grandjean,
Sander, & Veuilleumier, 2005; Holmes, Green, & Vuilleumier, 2005).

This perceptual side of facial expression processing is often overlooked, and
is hardly taken in consideration when studying the development of normal and
abnormal processing of facial expressions. Any abnormalities in low level visual
perception early in life could lead to difficulties with processing emotional ex-
pressions from faces. As a consequence, this might lead to abnormalities in social
interaction, considering that facial expression processing forms an important
basis for communication and social development early in life when language is
relatively immature. Indeed, basic visual processing deficits have recently been
suggested to underlie the face processing difficulties that have been found in
children with Autism Spectrum Disorder (ASD), (Johnson, 2005; Behrmann,
Thomas, & Humphreys, 2006).

The experiments described in this thesis, among others, address whether

there are developmental differences in the type of spatial frequency information
that is important for facial expression processing across childhood. In addition,
the experiments examine whether abnormalities in spatial frequency processing
are present in young children with Autism Spectrum Disorder (ASD) and
whether this is related to abnormal facial expression processing in this group.
In this introductory chapter, first some general background information and
explanation of concepts will be given to introduce the research questions that are
covered in this thesis. First, the concept of spatial frequencies will be explained.
Thereafter, a review will be given of studies that have investigated the role of
spatial frequencies in facial expression processing in healthy adults, followed by
a discussion on the development of this relation in childhood. Subsequently, a
short review will be given of the current knowledge pertaining to visual percep-
tion (especially spatial frequency) deficits in ASD. At the end of this chapter the
general research aims and additional questions are outlined.
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General introduction

1.1 Spatial frequency processing: a fundamental aspect
of vision

Our visual environment i1s complex and contains a lot of information: orienta-
tion, areas of light and dark at particular locations etc. The visual system cap-
tures this environmental information in terms of luminance variations (e.g.
Goldstein, 1999; de Valois & de Valois, 1988). Luminance variations occur in a
wide range of so called ‘spatial frequencies’ which can be expressed in cycles per
degree (c¢/d) of visual angle. Figure 1 presents two grating patterns differing in
spatial frequency (SF) content. The grating pattern at the left has a lower varia-
tion (0.5 c¢/d), and thus has a lower SF compared to the grating pattern at the
right.

High spatial frequencies represent abrupt, small luminance changes, corre-
sponding to sharp edges and fine perceptual detail, like for example the wrinkles
in a face or stripes on a shirt. Low spatial frequencies on the other hand repre-
sent global changes in luminance and provide information about the general
shape, proportions and large contours of objects in our visual environment (Bar,
2004; Goffaux & Rossion, 2006; Morrison & Schyns, 2001).

Direct evidence that HSF and LSF are respectively involved in local and
global processing of stimuli, comes from studies investigating the processing of
compound stimuli. Compound stimuli are stimuli that consist of a large shape
which is built up of smaller shapes of either the same or different identity (for
example the letter H built up out of X’s; the global level is the letter H and the
local level the X’s). Participants have to identify targets at either a local (level of
the smaller shape) or global level (level of the larger shape). Several studies have
shown that processing at the local level is primarily mediated by HSF whereas
global processing is driven by LSF (Boeschoten, Kemner, Kenemans, & Enge-
land, 2005; Shulman, Sullivan, Gish, & Sakoda, 1986). Besides its involvement in
local and global processing, the differential processing of HSF and LSF by the
visual system plays a central role in several other basic perceptual phenomena
including natural scene recognition (Peyrin, Baciu, Segebarth, & Marendaza,
2004), motion perception (see for review Hess, 2004) and face processing (see
for review Ruiz-Soler & Beltran, 2005; Goffaux & Rossion, 2006).
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Figure 1. depicts two grating patterns (upper) and their corresponding frequency function (lower).
The spatial frequency content of a stimulus is generally expressed in number of cycles per degree of

visual angle. The grating at the left (2) has a higher number of cycles per degree (highet SF) compared
to the grating at the right (b).

Important for the experiments described in this thesis, there are several indica-
tions that HSF and LSF information are processed differently by the visual sys-
tem. Studies focusing on neuronal activity in the Lateral Geniculate Nucleus
(LGN), the first relay point after the retina, indicate that two cell types in the
LGN respond differently to HSF and LSF: parvocellular (small receptive fields)
and magnocellular neurons (large receptive fields). Several studies have indi-
cated that although parvocellular and magnocellular neurons respond to an
overlapping range of SFs, parvocellular neurons are preferentially tuned (most
active) to HSF, whereas magnocellular neurons are more sensitive to LSF infor-
mation (Derrington & Lennie, 1984). Parvocellular and magnocellular cells pro-
ject to cells in different layers in the primary visual cortex (V1), which continue to
show different SF preferences (Tootell, Silverman, Hamilton, Switkes, & De
Valois, 1988). Because the conduction velocity of axons of the parvocellular sys-
tem is lower compared to the magnocellular system (see Hess, 2005), the re-
sponse latencies of magnocellular neurons in the input layers of the primary
visual cortex (Vi) are 10-20 ms faster than those of parvocellular neurons
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General introduction

(Schmolesky et al., 1998). But note that other researchers suggest a smaller dif-
ference (see for review (Skottun & Skoyles, 2007)).

Also at higher levels of the visual system there are indications for differential
processing of HSF and LSF. This evidence comes from fMRI and Event Related
brain Potential studies (ERP), which are well suited to investigate neuronal dif-
ferences in SF processing at a more macroscopic level reflecting activity in whole
populations of neurons. These studies indicate that whereas LSF’s elicit relatively
strong activations in secondary (more higher order) visual areas, HSF's seem to
predominantly activate more primary visual areas. Some authors have related
this to the more extended and direct innervation of secondary areas by the mag-
nocellular pathway (see for review Kenemans, Baas, Mangun, Lijffijt, & Ver-
baten, 2000). Others have related this difference in activity to SF between pri-
mary and secondary areas, to an increase in receptive field size from primary to
secondary visual areas (see for review Henriksson, Nurminen, Hyvarinen, &
Vanni, 2008).

In sum, there are several lines of evidence that indicate that HSF and LSF
information serve different visual functions: respectively detailed and global
processing. Also there is evidence that HSF and LSF information is processed
differently at several levels of the visual system. First, there are indications that
LSF information is processed faster compared to HSF information. Second, al-
though there is some overlap, there is evidence for differences in SF selectivity in
different cell types and brain areas. Important for the experiments in this thesis,
these fundamental differences in SF processing, e.g. timing as well as location,
can be measured with ERPs.

1.2 Spatial frequencies and facial expressions

Most relevant for the studies presented in this thesis, there is evidence for a
differential role of HSF and LSF in facial expression processing. Two fMRI stud-
ies have now provided evidence for the importance of particularly LSF informa-
tion 1n emotional expression processing. One study showed that LSF information
in a face is crucial to produce an increase in activation to fearful relative to neu-
tral faces in the amygdala (Veuilleumier, Armony, Driver & Dolan, 2003). The
amygdala is considered to be a key structure in emotional processing, as it initi-
ates rapid motor and autonomic responses to emotional events (Morris, Ohman
& Dolan, 1999; Whalen, Rauch, Etcoff, McInerney, Lee & Jenike, 1998). In con-
trast, Veuilleumier et al. (2003) showed that high spatial-frequency (HSF) in-
formation in faces did not evoke a differential response to fearful compared to
neutral expressions in the amygdala. A similar pattern of results was found in the
fusiform cortex, an area specifically associated with the processing of faces
(Winston, Vuilleumier & Dolan, 2003; Vuilleumier et al., 2003; Vuilleumier,
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Richardson, Armony, Driver & Dolan, 2004). Consistent with these fMRI find-
ings, and important for the topic of the current thesis, a recent ERP study found
that fearful faces only elicited a rapid enhancement (within 100ms) of visual
brain activity in occipito-temporal areas when they consisted of LSF information
(Pourtois et al., 2005). No such early enhancement of activity in visual cortex to
fearful face expressions was found when faces consisted of mainly HSF. These
ERP results further support the important role of LSF information in emotion
expression processing and provide evidence that LSF information is of special
importance during the early stages of facial expression processing (but see
Holmes, Winston & Eimer, 2005).

Such rapid processing of fear based on LSF cues has been suggested to pro-
ceed through a feedback route from the amygdala to the visual areas where faces
are further processed (Veuilleumier et al., 2003; Pourtois et al., 2005). The
amygdala in turn receives its input from a rapid magnocellular tecto-pulvinar
pathway that is preferentially tuned to processing of LSF information (Pourtois
et al., 2005; Winston et al., 2003; Veuilleumier et al., 2003). The existence of
such a ‘subcortical face processing route’ that is tuned to LSF would be consistent
with anatomical evidence from animal studies that the superior colliculus and
pulvinar receive substantial magnocellular inputs (Leventhal, Rodieck & Dreher,
1985; Berson, 1988; Merigan & Maunsell, 1993), and are part of a phylogeneti-
cally old route specialised for the rapid processing of fearful stimuli (Holmes et
al., 2005; Le Doux, 1996).

Whereas the studies reviewed above, mainly report on processing of emo-
tional information in the visual cortex, there are also behavioral studies that have
addressed the role of SF in facial expression processing. These studies have indi-
cated that information from different spatial frequency bands can be used flexi-
bly for face processing (see for review Ruiz-Soler & Beltran, 2005; Sowden &
Schyns, 2007). That is, the task at hand determines the usefulness of different SF
scale information. . Consistent with such a flexible scale usage hypothesis, par-
icipants have for instance been shown to use LSF information to rapidly catego-
rize emotional expressions (Schyns & Oliva, 1999) and for rapid attentional re-
sponses to fear (Holmes et al., 2005) whereas HSF information seems to be most
important for the success with which one can explicitly rate emotional expres-
siveness (or intensity), a process that may proceed at a slower time-scale (Schyns
& Oliva, 1999; Veuilleumier et al., 2003; Deruelle & Fagot, 2005; but see Goren
& Wilson (2006) for different effects using synthetic faces).

One of the main problems when investigating the influence of SF on face
processing is that outputs of LSF and HSF filtering differ not only at the level of
the spatial scale of information they convey, but also in terms of luminance and
contrast. This is related to the fact that the frequency power in natural stimuli is
maximal at low SF and almost exponentially decays at higher SF (see for review
Loftus & Harley, 2005). Therefore, the fast extraction of emotion based on LSF
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but not HSF might be simply due to the fact that HSF stimuli are less luminant
and of lower contrast. Until now, various methods have been applied to contral
for differences in contrast and luminance between HSF and LSF stimuli and
some of them might have led to inconsistencies between the studies (see for
review chapter 4). As vet, there has been no study that directly tested whether
differences in contrast/luminance truly influence the processing of facial expres-
sion.

1.3 What is known about the involvement of SF in the
development of facial expression processing?

As described in the previous paragraph, there is converging evidence from stud-
ies in adults for a subcortical face processing route that is rapid, operates on
L.SFs and modulates cortical processing. The development of this pathway has
not been studied, but Johnson (2005) suggests that newborn face processing and
face preferences might primarily rely on this subcortical route, or a precursor of
it. This suggestion is based on evidence that face processing in newborns is pri-
marily driven by subcortical pathways or brain structures, since the visual and
other cortical areas are still relatively immature.

In addition, the infant’s limited visual capacities play a role in face process-
ing in the first year of life. The vision of a newborn is solely based on LSF infor-
mation (acuity: < 1 ¢/d; contrast sensitivity: 0.1-0.2 ¢/d) (Slater & Sykes, 1977).
This is caused by immaturity of the visual system at several levels, such as lower
photoreceptor density and shorter segment length at the retina level, relatively
less developed parvocellular neurons (compared to magno) at the Lateral Geni-
culate Nucleus (LGN) level and lower synaptic density and larger cortical recep-
tive field size in the visual cortex (see for review Ellemberg, Terri, Lewis , Liu &
Maurer, 1999; Hammarrenger, Leporé, Lippé, Labrossei, Guillemot & Roy,
2003). In agreement with this, a recent study by de Heering, Turati, Rossion,
Bulf, Goffaux & Simion (2007) found that face recognition in newborns is pri-
marily steered by very low SF (< 0.5 ¢/d) information.

However, during infancy and early childhood, the visual system develops and
also other cortical areas mature. Vision rapidly increases and by the age of 3-4
years, sensitivity to HSF, as measured by the contrast sensitivity function,
reaches maturity (e.g. Adams & Courage, 2002). In chapter 2 we investigate
whether there are developmental differences in the type of SF that is important
for facial expression processing during childhood, with an emphasis on the initial
stages of facial expression processing in the brain.




Chapter 1

1.4 Why study visual perception in Autism Spectrum
Disorder?

Autism Spectrum Disorder (ASD) is a severe developmental disorder, character-
ized by a triad of impairments in social interaction, communication, and re-
stricted behaviour and interests (American Psychiatric Association, 1994). The
three most common forms of ASD are Autism, Asperger Syndrome and Pdd-nos.
The etiology of ASD has not been clarified yet, however genetic factors are likely
to play a role (Rutter, 2000). Furthermore, an increasing number of studies on
ASD has led to many suggestions about possible brain abnormalities underlying
this disorder. Most of these studies, however, focused on finding the brain corre-
lates of impairments in the social domain that strongly characterize ASD. An
often overlooked issue, however, is that people with ASD also show abnormali-
ties in basic sensory processing skills. More specifically, a growing number of
studies have indicated abnormalities in visual perception in ASD (see for review
Dakin & Frith, 2005; Mottron, Dawson, Souliéres, Hubert & Burack, 2006).
Perception has been suggested to be more locally or detail oriented in ASD. This
is based on a strong and still growing body of experimental evidence showing
that people with ASD are characterized by superior performance on tasks that
require local or detailed-focused processing and contain distracting global in-
formation, examples of such tasks are visual search tasks, embedded figure tasks
and the block-design test of the WISC (see for review Dakin & Frith, 2005). A
review of nearly 50 empirical studies by Happe & Frith (2006) suggests that the
findings of a local bias in visual perception in ASD are robust. Clinically it has
also been noted that individuals with autism often notice minor features or
changes in the environment that are overlooked by others (Hayes, 1987; Kanner,
1943)-

Whether global processing (e.g. the ability to see global structure by linking
smaller visual elements) itself is also affected in ASD is subject of ongoing con-
troversy. There 1s increasing evidence showing that people with ASD are capable
of global processing (de Wit, Schlooz, Hulstijn & van Lier, 2007; Mottron et al,,
2006; Rinehart, Bradshaw, Moss, Brereton & Tonge, 2000; Ozonoff, Strayer,
McMahon & Filloux, 1994; Iarocci, Burack, Shore, Mottron & Enns, 2006;
Plaisted, Dobler, Bell & Davis, 2006) and that deficits in performance on tasks
that probe global processing in ASD are related to the local or detailed processing
bias seen in ASD (see for review Mottron et al., 2006) as well as task instructions
and complexity of the stimulus (de Wit et al., 2007; Plaisted, Swettenham, &
Rees, 1999; Mottron, Burack, Stauder, & Robaey, 1999).

Importantly, the local processing style in ASD has been put forward as pri-
mary or at least contributory to some of the core characteristics of ASD, in par-
ticular problems with face processing (see for review Behrmann et al., 2006;
Dakin & Frith, 2005). In agreement with this suggestion, a local bias for the
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processing of faces and facial expressions has been found (Behrmann et al,,
2006; Lahaie, Mottron, Arguin, Berthiaume, Jemel, Saumier, 2006; Sasson,
2006). For example, children with ASD (9 years) do not show the typical whole
face advantage, i.e. superior recognition of face parts (eye, nose etc.) when they
are embedded in a whole face, compared to when they are presented in isolation
(Joseph & Tanaka, 2003). Furthermore, it has been found that the stronger the
local bias in adults with ASD, the slower their reaction in face-based gender and
identity discrimination tasks (Behrmann et al.,, 2006). See for similar finding
with respect to emotion recognition in 8 yr-old children with ASD (Gross, 2005).

There are several theories that aim to explain the above described perceptual
phenomena found in ASD (Dakin & Frith, 2005). The two main theories are the
Weak Central Coherence theory (WCC) and the Enhanced Perceptual Function
hypothesis (EPF). Central coherence is defined as an information processing
style that is driven by a strong desire to attach meaning to what one perceives
and is expressed as the tendency to process visual information in context, as a
whole or overall Gestalt at the expense of details (Frith, 1989). The most recent
version of the WCC suggests a lack of central coherence in ASD, causing them to
perform worse in tasks in which it is important to process stimuli within a larger
whole or within a context. This so-called local processing bias or cognitive style
present in ASD, can be overruled by explicit task demands (Happé, 1999; Dakin
& Frith, 2005; see for an updated review on WCC, Happé & Frith, 2006). At the
cognitive level Happé & Frith (2006) relate WCC to difficulties in broadening the
focus of visual attention. At the neural level, Happé & Frith (2006) suggest a link
of WCC to reduced connectivity throughout the brain in ASD (e.g. Castelli, Frith,
Happé & Frith, 2002; Just, Cherkassky, Keller & Minshew, 2004; Frith, 2003;
Belmonte, Allen, Beckel-Mitchener, Boulanger, Carper & Webb, 2004; Koshino,
Carpenter, Minshew, Cherkassky, Kelle & Just, 2005; Courchesne & Pierce,
2005). Both mechanisms involve deficiencies in higher-order cognitive processes
such as attentional control and problems in the involvement of broader brain
networks.

In contrast to the WCC theory, other theories have situated the mechanism
for local bias at the level of perception (e.g. Plaisted, O’Riordan & Baron-Cohen,
1998a; Plaisted, Saksida, Alcintara & Weisblatt, 2003; Mottron et al., 2006).
Plaisted and colleagues for example suggested that atypical perceptual processes
in ASD might enhance the salience of individual stimulus features. Their experi-
ments on visual search, in which participants have to search for a deviant stimu-
lus item in an array of visual items (e.g searching for a red square between red
circles an blue squares), show that ASD subjects have better search performance
than controls. The authors suggest that such performance enhancement might
occur at very early stages of sensory processing and may be related to an en-
hanced ability to discriminate between visual items (Plaisted et al., 1998a;
Plaisted, O’'Riordan, & Baron-Cohen, 1998b; O’Riordan, Plaisted, Driver &
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Baron-Cohen, 2001; Plaisted, Saksida, Alcantara & Weisblatt, 2003; Kemner,
Ewijk, van Engeland, & Hooge, 2008).

A related, though not identical ‘perceptual’ theory, the Enhanced Perceptual
Function (EPF) hypothesis, integrates both neurophysiological and behavioral
findings in ASD by adding the proposition of an over-functioning and increased
autonomy (less control from higher-order areas) of brain regions that are typi-
cally involved in primary perceptual functions (see for review on the model
Mottron et al., 2006). Behaviorally, this would for example be reflected in a local
bias in the above mentioned visual tasks as well as superiority in discriminating
low-level visual input as found by Bertone, Mottron, Jelenic, & Faubert (2005)
and Plaisted et al., (1998a). Neurophysiologically, this abnormality would be
reflected in enhanced sensory processing as well as a general skewing of brain
activity towards primary visual areas compared to higher order visual and other
cortical areas, which has indeed been found in several tasks in ASD (see for re-
view Mottron et al., 2006).

1.5 Spatial frequency and facial expression processing in
ASD

Because spatial frequencies play an important role in local-global as well as face
processing in healthy adults, a few authors have put forward the hypothesis that
a basic abnormality in SF processing might underlie the local processing bias
seen in ASD (e.g. Boeschoten, Kemner, Kenemans, & Engeland, 2007; Deruelle,
Rondan, Gepner, & Tardif, 2004). A recent ERP study indeed demonstrated
abnormalities in the processing of SF in children with ASD, more specifically in
the processing of HSF stimuli (gratings), originating from deviant processing in
primary and secondary visual areas (Boeschoten et al., 2007). Furthermore, with
respect to face processing, there is evidence that children with ASD (4-13 yrs;
mean age: 6 years) primarily select HSF information for identity matching,
whereas age matched typically developing children show a trend towards an LSF
bias (Deruelle et al., 2004). Furthermore, a HSF bias for identity recognition has
been found in a single case study on an adult with ASD, in contrast to controls
who used a lower range of SFs (Curby, Schyns, Gosselin, & Gauthier, 2003).
Another study indicated that adults with Asperger syndrome have difficulties in
recognizing emotional expressions from very low SFs (Katsyri, Saalasti,
Tiippana, von Wendt & Sams, 2008). This preference for HSF, instead of LSF, in
ASD has been suggested to be linked to a deficit of the subcortical LSF pathway
for face processing (Deruelle, Rondan, Salle-Collemiche, Bastard-Rosset, & Da
Fonséca, 2008; Johnson, 2005). Although speculative at this stage, such an
explanation would also fit the finding that children with ASD orient less to faces
early in life (Osterling & Dawson, 1994), a function thought to be primarily
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steered by the LSF subcortical pathway as proposed by Johnson (2005). The
experiments described in chapter 3 of this thesis will investigate whether abnor-

mal patterns of SF processing in ASD are part of the disorder from an early age
on and whether they influence facial expression processing.

1.6 Self-monitoring and ACC functioning

Whereas most studies in this thesis focus on early visual development, with in-
creased maturation of cortical networks, deficiencies in higher order cognitive
abilities are seen in ASD. One example are deficits in self-monitoring, which play
an important role in social interactions (Rusell & Jarrold, 1998; Bogte, Flamma,
van der Meere, & van Engeland, 2007). Self-monitoring refers to the ability to
keep track of one’s own actions and to evaluate whether they resulted in positive
or negative outcomes in order to adapt future behavior. Abnormalities in self-
monitoring might relate to problems of people with ASD to meet the require-
ments of social interactions. It has been suggested that if children develop diffi-
culties in self-monitoring during childhood, they miss the normal experience of
being responsible for their own actions, eventually resulting in an impoverished
sense of self (Rusell & Jarrold, 1998).

Deficiencies in self-monitoring might also lead to problems in integrating
self-related information with information about the behavior of other people,
resulting in an atypical development of social interaction, leading to for example
joint attention impairments (Mundy, 2003). Furthermore, several behavioural
features in autism, like perseverative responding, repetitive behaviors, poor
imitation skills, may all result from an inability to monitor ongoing behaviors
and adapt behavior accordingly (Hill, 2004; Mundy, 2003; Russell, 1997; Hen-
derson, Schwartz, Mundy, Burnette, Sutton, Zahka & Pradella, 2006).

Several studies have now indicated abnormalities in the Anterior Cingulate
Cortex (ACC) in ASD, a structure in the frontal brain (e.g. Haznedar, Buchs-
baum, Metzger, Solimando, Spiegel-Cohen, & Hollander, 1997; Haznedar et al.,,
2000). Importantly, this structure has been suggested to play an important role
in the normal development of self-monitoring from late childhood to adulthood
(Davies, Segalowitz, & Gavin, 2004; Ladouceur, Dahl, & Carter, 2007). In chap-
ter 5 we investigate whether abnormal ACC functioning is related to abnormali-
ties in self-monitoring in ASD in school age children (7-14 years; mean age: 10
years).

17



Chapter 1

1.7 General aims

1) To explore the role of spatial frequency information in facial expression
processing, in typically developing children at different developmental stages
(3-8 years) (chapter 2).

2) To examine whether there are abnormalities in basic aspects of SF process-
ing in young (3-4 yr-old) children with ASD compared to age and IQ
matched controls, and to investigate how this affects face processing (chapter
3).

3) To investigate a methodological aspect of the role of SF in facial expression
processing. More specifically, we will investigate the effect of luminance and
contrast equalization on the role of HSF and LSF in facial expression proc-
essing in healthy adults (chapter 4).

4) To investigate the involvement of ACC problems in self-monitoring of actions
in older children (mean age: 10 years) with ASD (chapter 5).

To address these questions the Event Related brain Potential (ERP) method is
used. ERPs are derived from the electroencephalogram (EEG) that is measured
continuously during execution of a perceptual or cognitive task. This is done by
means of averaging activity evoked by certain types of trials (i.e. stimuli consist-
ing of HSF or LSF information) within a certain time interval around the onset of
a stimulus, in the current experiments mostly a face.

The average brain activity or brain potentials that are derived after this aver-
aging process can be described in terms of positive and negative activity (ERP
peaks) that follow each other in time and have a specific topography depending
on the type of task. Such ERP fluctuations are assumed to reflect synchronized
postsynaptic activity in large populations of cortical pyramidal neurons, related
to sensory, motor or cognitive processes (Luck, 2005). The latency of onset of
different ERP fluctuations (peaks) reflects the time course of these processes.

The first reason to use the ERP technique is that it is well suited to study
influences of, for example, emotion and SF processing at different processing
stages, because of its high temporal resolution. Secondly, ERPs do not require
behavioral or verbal responses, and are therefore well suited for application in
young children, especially when studying clinical groups.

Based on the different type of research questions the following ERP components
will be examined:

The role of SF in facial expression processing in the different ex-
periments, described in chapters 2-4, was studied by looking at the early
stages of face processing in the visual areas of the brain, where interactions be-
tween SF and Emotion have been found to occur in previous studies (Pourtois et
al., 2005). Two visual peaks were studied: P1 and N170. The P1 (positivity at 100
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ms after Stimulus Onset (SO)) is a fast exogenous response, which reflects striate
as well as extrastriate visual processing (e.g. Rossion et al., 1999). The N170
(negativity at 170 ms after SO) originates from a network of regions, probably
including the fusiform gyrus, inferior occipital cortex, superior temporal sulcus
and the inferior, middle and superior temporal gyri (Henson, Goshen-Gottstein,
Ganel, Otten, Quayle & Rugg, 2003). The N170 is thought to be a marker of face
detection, but also face encoding processes, such as the encoding of the structure
or configuration of the face (e.g. position of the eyes relative to the mouth), that
are important for the ability to discriminate between different faces (Jacques &
Rossion, 2006).

Abnormalities in the basic aspects of SF processing in young chil-
dren with ASD (chapter 3) were examined by investigating the early stages of
SF processing in visual brain areas. The amplitude and latency of the visual P1
(positivity at 100 ms after SO) and N2 (negativity at 200 ms after SO) to HSF
and LSF grating stimuli were examined. These peaks are both localized in visual
areas and reflect striate and extrastriate visual processing. Typically, longer P1
and N2 latencies have been found when processing HSF, compared to LSF stim-
uli (e.g. Boeschoten et al., 2007). In addition, SF modulates the amplitude of the
P1 and N2. Dependent on the exact frequency of the grating, larger amplitudes
are found for HSF compared to LSF gratings on medial occipital electrodes (e.g.
Boeschoten et al., 2007).

To investigate the involvement of the ACC in problems in self-
monitoring in school age children with ASD (chapter 5) the latency and
amplitude of two ERPcomponents, the Error-Related-Negativity (ERN; negativ-
ity around 50-100 ms after response) and Pe (error-related positivity around
200-500 ms after response) were studied. Both ERP components have been
associated with self-monitoring and have been localized in the ACC in healthy
adults (e.g. Hermann, Rommler, Ehlis, Hedrich, & Fallgater, 2004; van Veen &
Carter, 2002). The ERN and Pe are evoked by a specific type of self-monitoring,

namely response monitoring and are typically enhanced when subjects make
erroneous responses during a certain task.
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Vlamings, P. H. J. M., Jonkman, . M., Kemner, C.

Child Development. (in revision)

There is converging evidence for the presence of a fast face processing route that oper-
ates on global face characteristics in the mature brain. Until now little is known about the
development of such a route, which is surprising given suggestions that this fast ‘global’
route might be affected in neurodevelopmental disorders, such as autism. To address
this, we compared early visual Event Related brain Potentials to pictures of fearful and
neutral faces, containing detailed or global information in 3-4 (n= 20), 5-6 (n = 25), and 7-8
(n=25) year old children. In children, fast brain responses to emotional expressions were
driven by detailed information. Developmental effects are discussed in terms of matura-
tion of the fast route as well as increase in experience with facial expressions with age.
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Chapter 2

Introduction

Decoding the emotional content of a face is an important skill in daily life, be-
cause it helps to evaluate the state and the intentions of others. Given that facial
expressions like fear, anger or threat may be signals for potential danger, it is
plausible that the detection and processing of emotional expression proceeds
very fast. Neuroscientific studies in adults have indeed proposed a fast, phyloge-
netically older, route in the brain for the rapid processing of facial expressions,
the so-called subcortical face processing route that includes the amygdala. This
fast route is thought to bypass the slower cortical route and may directly modu-
late the responses of specialised visual cortical areas to faces (e.g. Le Doux, 1996;
Veuilleumier, Armony, Driver & Dolan, 2003; see for review Johnson, 2005).
This fast route is seen as a “quick and dirty” route which extracts emotion based
on global face characteristics (the overall configuration of a face, the contours)
but not detailed information, which is processed through the ‘slower cortical
route’ (Veuilleumier et al., 2003; Johnson, 2005; Winston, Veuilleumier & Do-
lan, 2003; Pourtois, Dan, Grandjean, Sander & Veuilleumier, 2005). Consistent
with this, several studies have found that rapid influences of emotional expres-
sions on brain activity in visual brain areas as well as behavior are primarily
mediated by global face characteristics rather than the details of a face (Pourtois
et al., 2005; Holmes, Green & Veuilleumier, 2005; Viamings, Goffaux & Kemner,
in press). However, there are no studies that have investigated whether in chil-
dren rapid brain responses to emotional expressions are also primarily mediated
by global face characteristics. This is important given some theories which sug-
gest that the fast ‘global’ route might be affected early in life in neurodevelop-
mental disorders, such as autism (Johnson, 2005; Laycock, Crewther & Crew-
ther, 2007).

High temporal resolution Event-Related brain Potential (ERP) studies can be
used to study the rapid processing of facial expressions in the brain in the order
of milliseconds. Several ERP studies have reported that in both adults and chil-
dren, negative facial expressions affect the amplitude and/or latency of early
ERP components in visual areas. More specifically, a larger amplitude or faster
latency of the P1 — a positive component that occurs over lateral visual (occipital)
cortical areas, at about 100 milliseconds after presentation of a stimulus, for
fearful expressions as compared to neutral or positive expressions has been
noted in several studies in adults (Ashley, Veuilleumier & Swick, 2004; Batty &
Taylor, 2003; Pizzagalli, Regard & Lehmann, 1999; Pizzagalli et al., 2002) as well
as in infants (starting from 7 months of age) and children (Nelson and de Haan,
1996; Dawson, Webb, Carver, Panagiotides & McPartland 2004, Batty & Taylor,

2006). The latencies of these early effects are usually somewhat delayed in in-
fants and children compared to adults.
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Other studies report effects of emotional expressions on the N170 peak, which
occurs about 170 milliseconds after presentation of the face stimulus and is
measured at occipito-temporal electrodes. The N170 is the earliest “face-specific”
ERP component, since its amplitude has been found to be consistently enhanced
to faces in comparison to multiple other, non-face, object categories (see for
review Jacques & Rossion, 2004). Typically, larger N170 amplitudes are seen in
response to (negative) emotional expressions than to neutral or positive expres-
sions in adults (Blau, Maurer, Tottenham & McCandliss, 2007; Campanella,
Quinet, Bruyer, Crommelinck & Guerit, 2002; Batty & Taylor, 2003; Stekelen-
burg & de Gelder, 2004; De Haan, Nelson, Gunnar & Tout, 1998; Dawson et al.,
2004, Batty & Taylor, 2006). In children, effects of emotional expression (nega-
tive) on the N170 have been reported in 3-4 year olds (Dawson et al. ., 2004) and
5-year-olds (De Haan et al., 1998). However, a recent study of Batty and Taylor
(2006), investigating facial expression processing from early childhood to ado-
lescence, indicated that early effects of negative emotion do not occur at the face
specific N170 until the age of 14-15.

Although the P1 and N170 results are not entirely consistent across develop-
mental studies, the above mentioned ERP studies underline the rapid ( < 200
ms) processing of emotional expressions in visual areas in both adults and chil-
dren. Several authors have investigated which information the visual system
extracts in order to decode emotional expressions at such an early stage by ma-
nipulating the so-called spatial frequency content of face images (Veuilleumier et
al., 2003; Winston, et al., 2003; Holmes, Winston & Eimer, 2005; Pourtois et al.,
2005). In our everyday environment images are built up of both low- (LSF) and
high spatial frequency (HSF) information, respectively referring to slow or fast
luminance changes (e.g. Goldstein, 1999; de Valois & de Valois, 1988). By varying
the spatial frequency content of a stimulus or image (by filtering out either high
or low frequency information), one can emphasize different types of information
in the image and study the difference in processing of this information (e.g.
Goldstein, 1999; de Valois & de Valois, 1988). For instance, by presenting an
image built up of mainly high spatial frequency, details of the image (sharp
edges, contours of features such as the mouth, eyes, wrinkles etc.) are enhanced.
In contrast, more global perceptual features of an image (like shading or large
contours as well as the global configuration of the face: e.g. distance between
eyes, eye brows and mouth) are enhanced when images are composed of mainly
low spatial frequencies (Goffaux & Rossion, 2006; Morrison & Schyns, 2001).

Importantly, by varying spatial frequency information, neuroscientific stud-
ies have found evidence for differential sensitivity of the fast subcortical and
slower cortical processing route to LSF and HSF information (e.g. Veuilleumier
et al., 2003; Winston et al., 2003; see for review Johnson, 2005). Two fMRI
studies indicated that the fast subcortical route is primarily sensitive to low spa-
tial frequency information: enhanced activity to emotional expressions in the
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amygdala and other subcortical structures was only found for faces containing
LSF, but not HSF. In line with this, two ERP studies found that in adults rapid
effects of emotion in visual brain areas at the P1 (Pourtois et al., 2005) and N170
(Vlamings et al., in press) are primarily mediated by LSF information, possibly
through the subcortical face route (tecto-pulvinar-amygdala pathway) which is
primarily sensitive to LSF and modulates activity in higher order visual face
processing areas.

Behavioral studies have also provided evidence for differential sensitivity to
HSF and LSF content of emotional expression for face recognition or identifica-
tion in adults. For instance, it has been shown that participants use LSF informa-
tion to rapidly categorize emotional expressions, whereas HSF information
seems to be most important for the success with which one can explicitly rate
emotional expressiveness (or intensity), a process that may proceed at a slower
time-scale (Schyns & Oliva, 1999; Veuilleumier et al., 2003; Deruelle & Fagot,
2005; but see Goren & Wilson (2005) for different effects using synthetic faces).
In addition, the LSF components of faces are critical to the production of rapid
behavioral attentional responses towards fearful facial expressions (Holmes et
al., 2005a).

Little is known about the role of low and high spatial frequencies in the per-
ception of facial expressions in children. There is only one behavioral study
(Deruelle & Fagot, 2005) which reported that 5-8 year-old children, like adults
(Schyns & Oliva, 1999; Veuilleumier et al., 2003), rely on HSF information when
explicitly processing emotional expressions from faces (deciding whether a face
is smiling or not). There is, however, no information on whether the rapid proc-
essing of facial expressions in children is, like adults, based on LSF information.
A better understanding of the normal development of facial expression process-
ing, is also essential for the understanding of atypical development. In autism,
for instance, deficiencies in the fast LSF pathway early in life have been sug-
gested to underlie abnormalities in face processing (Johnson, 2005).

In the present study investigated effects of SF manipulations on the early
processing of fearful facial expressions in the visual cortex in groups of 3-4, 5-6
and 7-8 year-old children, using the Event Related Potential technique. During a
passive viewing task we examined whether the effects of emotion expression at
early information processing stages (P1 and N170), are primarily mediated by
global LSF cues, as in adults, or by detailed HSF information. Through admini-
stration of an additional behavioural task in which subjects were required to
categorize negative (fearful) or neutral face expressions, we aimed to explore the
role of spatial frequency on the maturation of more conscious emotion recogni-

tion processes. This task was only administered to the 5-6 and 7-8 year-old chil-
dren.



The role of HSF and LSF information in facial expression processing in children

Methods

Participants

The present study included 20 children (11 female, g male) between 3 and 4
years (mean age 3.10 years), 25 children (12 female, 13 male) between 5 and 6
years (mean age 6.1 years) and 25 children (12 female, 13 male) between 7 and 8
years (mean age 7.8 years). The children were recruited at an elementary school
in Kerkrade (The Netherlands). The 3-4-year-old group originally counted 27
subjects, but 7 children dropped out due to ocular or muscular artefacts and/or
Insufficient number of trials in which they looked at the screen. In the 7-8 year-
olds, three children (of 28 ) were excluded because they scored in the clinical
range ( > 63) on Internalizing (I), Externalizing (E) and Total Problem subscales
of the Child Behaviour Checklist (Achenbach, 1991). The CBCL is an instrument
used for the detection of behavioural problems in children and was filled in by
the parents. To ensure that all children were in the normal cognitive range con-
sidering their age (IQ > 90), all 3-4 year-old children completed the SON-R 2 12
- 7 (Tellegen, Winkel, Wijnberg-Williams, & Laros, 1998) and the 5-6 and 7-8
year-old children performed two subtests of the WISC-III (Wechsler, 1991): the
block design test and vocabulary. The estimated total IQ score derived from these
subtests has a mean reliability of .94 and a mean validity of .91 compared to the
complete WISC-III (Spreen & Strauss, 1998).

Participants had no neurological history and had normal or corrected to
normal vision. All parents gave written informed consent for participation of
their child in the study. The experimental procedure was approved by a local

ethical committee of the Faculty Psychology at Maastricht University, The Neth-
erlands.

Stimuli and task procedure

Face stimuli consisted of 16 grayscale images (8 males; 8 females), one half de-
picting a neutral expression, the other half depicting a fearful expression. The
photographs were taken  from the NimStim  Face Set
(http://www.macbrain.org/faces/index.htm, Tottenham, Borscheid, Ellertsen,
Marcus & Nelson, 2002) and have shown to evoke emotional effects at the level
of the N170 before in adults (Blau et al., 2007). Face images included European-
American and African-American models. Face pictures were trimmed to remove
external features (neck and hairline). All pictures were fitted in a gray frame of
500 x 700 pixels. Each face subtended 6.3 degrees of visual angle at a distance of
113 cm. The HSF images were created by filtering the original photographs, using
a high-pass cut-off that was > 6 cycles/deg of visual angle (see figure 1). The LSF
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images were created using a low-pass filter that was < 2 cycles/deg of visual

angle. Filtering was performed in Matlab (The Mathworks, Natick, MA) using as
set of Gaussian filters.

Figure 1. Example of fearful and neutral LSF (< 2 ¢/d) and HSF (> 6 ¢/d) face stimuli.

The task consisted of four blocks, each containing 73 trials. Within each block, 64
faces and 9 animation figures were presented on a grey background, in random-
ized order. All faces were presented for 500 ms, with an inter-stimulus interval of
1600-1800 ms. Participants were instructed to maintain fixation and to attend to
all pictures. They had to press a response button as soon as they saw an anima-
tion figure on the screen and had to refrain from responding to all other images.
This task was used to maintain the subject’s attention towards stimulus presen-
tation. Short pauses were given between blocks. A video camera, situated next to
the screen, recorded the child’s looking behaviour. For 3-4 year-olds looking
behaviour was coded offline, for the 5-6 and 7-8 year-olds it was monitored
online.

After the EEG measurement 5-6 and 7-8 year-old children performed an
additional reaction time task in which they had to decide as fast and accurate as
possible whether faces looked fearful or ‘usual’ ( ‘neut<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>