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Re�ning Attention-De�cit/Hyperactivity Disorder
and Autism Spectrum Disorder Genetic Loci by
Integrating Summary Data From Genome-wide
Association, Gene Expression, and DNA
Methylation Studies

Anke R. Hammerschlag, Enda M. Byrne, eQTLGen Consortium, BIOS Consortium,
Meike Bartels, Naomi R. Wray, and Christel M. Middeldorp
ABSTRACT
BACKGROUND: Recent genome-wide association studies (GWASs) identi�ed the �rst genetic loci associated with
attention-de�cit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). The next step is to use these
results to increase our understanding of the biological mechanisms involved. Most of the identi�ed variants likely
in�uence gene regulation. The aim of the current study is to shed light on the mechanisms underlying the genetic
signals and prioritize genes by integrating GWAS results with gene expression and DNA methylation (DNAm) levels.
METHODS: We applied summary-data–based Mendelian randomization to integrate ADHD and ASD GWAS data with
fetal brain expression and methylation quantitative trait loci, given the early onset of these disorders. We also
analyzed expression and methylation quantitative trait loci datasets of adult brain and blood, as these provide
increased statistical power. We subsequently used summary-data–based Mendelian randomization to investigate if
the same variant in�uences both DNAm and gene expression levels.
RESULTS: We identi�ed multiple gene expression and DNAm levels in fetal brain at chromosomes 1 and 17 that were
associated with ADHD and ASD, respectively, through pleiotropy at shared genetic variants. The analyses in brain and
blood showed additional associated gene expression and DNAm levels at the same and additional loci, likely because
of increased statistical power. Several of the associated genes have not been identi�ed in ADHD and ASD GWASs
before.
CONCLUSIONS: Our �ndings identi�ed the genetic variants associated with ADHD and ASD that likely act through
gene regulation. This facilitates prioritization of candidate genes for functional follow-up studies.
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Attention-de�cit/hyperactivity disorder (ADHD) and autism
spectrum disorder (ASD) are two prevalent neuro-
developmental disorders (1,2). ADHD is characterized by a
persistent pattern of inattention and/or impulsiveness and
hyperactivity (3). ASD is characterized by impaired social and
communication skills together with repetitive and restrictive
behavior (3). Heritability estimates are around 80% (4), and
recent genome-wide association studies (GWASs) identi�ed
the �rst genetic loci associated with ADHD (5) and ASD (6). The
next step is to understand the underlying biological mecha-
nisms that drive these �ndings. This is frequently not
straightforward, because the mapping resolution of GWAS is
limited by linkage disequilibrium (LD) of the genome. Because
of this and abundant long-range gene regulation (7), the causal
gene is not necessarily the most proximal to the lead single
nucleotide polymorphism (SNP) of an identi�ed locus (8).
SEE COMMENTARY
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In silico analytical approaches can aid to prioritize plau-
sible causal genes and regulatory elements at risk loci for
further functional follow-up studies. It has been observed that
most of the variants identi�ed in GWASs are located in en-
hancers and regions of open chromatin (9,10), suggesting
that they in�uence gene regulation, rather than affect the
coding sequences of transcribed proteins (11). Genetic vari-
ants that are associated with gene expression levels are
called expression quantitative trait loci (eQTLs). It has been
shown that DNA methylation (DNAm) quantitative trait loci
(mQTLs) colocalize with eQTLs (12,13). Hence, it is likely that
mQTLs mediate the effects of genetic variants on expression
levels of genes, mechanisms that might contribute to neu-
rodevelopmental disorders including ADHD (14) and ASD
(15,16). The aim of the current study is to integrate genetic
variants from ADHD and ASD GWASs with eQTL and mQTL
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variants to shed light on the mechanisms underlying the
genetic signals. Because ADHD and ASD show strong co-
morbidity (17), which seems to be partly explained by shared
genetic factors (6,17–21), we also investigated whether there
are shared biological mechanisms.

Summary-data–based Mendelian randomization (SMR)
can be used to investigate if effects of genetic variants are
mediated by gene expression levels (22) or DNAm levels (23)
by utilizing summary-level data from independent GWASs
and eQTL or mQTL studies. The SMR test is followed by a
heterogeneity in dependent instruments (HEIDI) test to
investigate if the association is due to a shared causal
variant and is not a consequence of the widespread LD in
the genome. The latter may lead to association owing to
linkage, i.e., the colocalized GWAS variant and eQTL/mQTL
may tag different causal variants that are in LD. This ability
to distinguish a causal model from a linkage model is not
featured in other methods that integrate GWAS and eQTL or
mQTL datasets (22). However, a nonsigni�cant HEIDI test
does not exclude the possibility of horizontal pleiotropy (the
same variant controls both disease risk and DNAm/gene
expression independently) instead of causality. We therefore
use “pleiotropy” or “pleiotropic association” to describe
associations identi�ed by the HEIDI test to acknowledge
that the associations cannot be interpreted with certainty as
causality. The SMR approach also provides an opportunity
to map DNAm sites to gene expression through shared
genetic variants, in this way clarifying which genes are
regulated by DNAm sites (24).

Neurodevelopmental disorders likely originate during pre-
natal life (25,26). Studies have observed an enrichment
among high-con�dence fetal brain eQTLs of genetic variants
associated with ADHD and ASD (27), and colocalization of
autism-associated genes with clusters of differentially meth-
ylated sites in fetal brain tissue (28), suggesting an important
prenatal genetic component for both disorders. In the current
study, we performed SMR analyses integrating ADHD and
ASD GWAS �ndings with eQTL and mQTL studies of fetal
brain tissue to interpret the functional consequences of
common genetic variation associated with the two disorders.
While previous studies mainly focused on one type of omics
data (i.e., eQTLs or mQTLs), we compared results of both
datatypes and subsequently used the SMR approach to
identify pleiotropic relationships between DNAm and gene
expression levels. We also investigated if the identi�ed genes
and DNAm sites for ADHD and ASD overlap to shed light on
the shared genetic factors of the two disorders, as these are
currently unknown. Because the fetal brain datasets are still
relatively limited in number of samples, which reduces sta-
tistical power to identify QTLs, we took advantage of the
growing number of eQTL and mQTL datasets for brain and
blood and repeated our analyses using these datasets. It has
been reported that eQTLs and mQTLs correlate highly be-
tween independent brain and blood samples (29), suggesting
that these datasets provide additional insight by a gain in
power for gene discovery. We compared our �ndings in fetal
brain, brain, and blood to examine whether they point to the
same genes.
Biological Psychi
METHODS AND MATERIALS

GWAS Datasets
We used the most recent publicly available genome-wide
meta-association results for ADHD (5) and ASD (6). The
ADHD study included 3 sets of data: 1) clinical ADHD diag-
nosis in 20,183 individuals and 35,191 control subjects that
were collected by iPSYCH and Psychiatric Genomics Con-
sortium (PGC) projects, 2) a continuous ADHD scale measured
in 17,666 children of EAGLE (EArly Genetics and Lifecourse
Epidemiology) and 2798 adolescents of QIMR (Queensland
Institute of Medical Research), and 3) self-reported ADHD
diagnosis in 5857 individuals and 70,393 control subjects part
of 23andMe (Sunnyvale, CA). We applied the same approach
of dataset inclusion as the ADHD GWAS of Demontis et al. (5)
and performed our main analysis on dataset 1. Subsequently,
we evaluated the results of a GWAS meta-analysis of datasets
1 and 2 and of datasets 1, 2, and 3. Details of these meta-
analyses are described in Demontis et al. (5). Datasets 2 and
3 were not analyzed individually owing to limited statistical
power. The ASD data included 18,381 ASD cases and 27,969
control subjects collected by the iPSYCH and PGC projects.

eQTL and mQTL Datasets
We used summary statistics from multiple cis-eQTL and cis-
mQTL datasets measured in fetal brain, adult brain, and blood.
All datasets are described in Table S1. For brain, we generated
one input dataset for the SMR analyses of eQTLs and one for
mQTLs, by meta-analyzing 4 brain eQTL datasets and 3 mQTL
datasets. Because cis-eQTLs and cis-mQTLs are highly
correlated in different brain regions and samples, ranging from
0.82 to 0.99 (29), this is the most ef�cient use of the available
data, as it yields the highest statistical power. The meta-
analyses were performed in MeCS (meta-analyze cis-eQTL
data in correlated samples) (29), which is implemented in the
SMR software. MeCS requires summary-level data in the cis-
regions and accounts for sample overlap. Before meta-
analyzing, we standardized betas and standard errors of
eQTLs and mQTLs (22).

SMR Analysis to Identify Relationships Between
Gene Expression and ADHD/ASD
We applied SMR (https://cnsgenomics.com/software/smr/)
(22) to identify genetic signals associated with both phenotypic
and gene expression variation. This approach makes use of
the concept of MR, a technique aimed at detection of causal
effects. MR analysis utilizes genetic variants as an instrumental
variable to test for the causative effect of an exposure on an
outcome. The �rst step of the SMR method is an MR analysis
in which the genetic variant is de�ned as the instrumental
variable, the gene expression level as exposure, and the trait
as outcome. This analysis is a two-step least-squares
approach, including the effect size of the top cis-eQTL SNP
(2-kb window) and its corresponding effect in the GWAS. We
only included probes for which the top associated cis-eQTL
had p , 5 3 1028, because one of the assumptions for MR
analysis is that the instrumental variable has a strong effect on
atry September 15, 2020; 88:470–479 www.sobp.org/journal 471
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tested the cis-mQTLs located within 2-Mb distance in either
direction of a gene expression probe, and only included probes
with a top associated cis-mQTL of p , 5 3 1028. SMR p
values were Bonferroni corrected for the number of tested
pairs of DNAm sites and genes per genomic region that we
investigated. Subsequently, HEIDI tests were performed to
distinguish pleiotropic associations from linkage, following the
same steps as described above for the eQTL analyses.

RESULTS

Relationships Between Gene Expression/DNAm
and ADHD
We applied SMR and HEIDI to test for pleiotropic associations
between fetal brain gene expression levels and ADHD and
between fetal brain DNAm levels and ADHD (Figure 1C). We
could not detect signi�cantly associated gene expression
levels in the fetal brain data, but we did identify one fetal brain
DNAm site (cg10881128) that passed the HEIDI test (i.e.,
pleotropic association) at chromosome 1p34.2 (Figure 2 and
Table S2).

We continued with SMR analyses of eQTLs and mQTLs
measured in brain and blood (Figure 1C). The locus 1p34.2
Biological Psychi
showed associations in both the brain and blood mQTL
datasets as well (Table S2 and Figure S1A, B), although
different probes passed the HEIDI test (cg06373377 in brain;
cg08959526 and cg13666471in blood; cg10881128 did show
strong associations with ADHD in both tissues). Furthermore,
the SMR analysis of blood eQTL data showed pleiotropic as-
sociations for 2 genes, MED8 and antisense gene AL139289.1,
at the same locus (Table S2 and Figure S1C). Table S3 de-
scribes gene functions and associated phenotypes of these
genes, and the genes identi�ed by other SMR analyses of this
study.

Besides the locus at chromosome 1, we identi�ed multiple
other loci in the brain and blood datasets (Table S2). Two
related novel transcripts (AP006621.1 and AP006621.5) that
map to 11p15.5 were identi�ed for ADHD in the analyses of
brain and blood eQTL data and showed evidence of pleiotropy
(Figure S2A, B). Furthermore, 7 DNAm sites in blood at
12q21.33 were identi�ed, of which 3 showed evidence for
pleiotropy (Figure S3).

In addition to the ADHD analyses described above, we
repeated the SMR analyses using the GWAS meta-analysis
data including PGC/iPSYCH and EAGLE/QIMR, and the
GWAS meta-analysis data including PGC/iPSYCH, EAGLE/
Figure 2. SMR analysis results of attention-
de�cit/hyperactivity disorder and fetal brain mQTLs
at 1p34.2. In the lower panel, red crosses are the
mQTLs for the probe displayed in the left upper
corner. In the upper panel, gray dots are single
nucleotide polymorphisms from the attention-de�cit/
hyperactivity disorder GWAS, blue diamonds are the
tested DNA methylation sites in the region, and
closed red diamonds are the signi�cantly associated
DNA methylation sites after Bonferroni correction
(pSMR) (horizontal dotted red line) that passed
the heterogeneity in dependent instruments test
(i.e., pleiotropic associations). GWAS, genome-wide
association study; mQTL, methylation quantitative
trait loci; SMR, summary-data–based Mendelian
randomization.
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Figure 3. SMR analysis results of autism spectrum
disorder and fetal brain eQTLs at 17q21.31. In the lower
panel, red crosses are the eQTLs for the probe displayed
in the left upper corner. In the upper panel, gray dots are
single nucleotide polymorphisms from the autism spec-
trum disorder GWAS, blue diamonds are the tested genes
in the region, and closed red diamonds are the signi�-
cantly associated genes after Bonferroni correction
(pSMR) (horizontal dotted red line) that passed the het-
erogeneity in dependent instruments test (i.e., pleiotropic
associations). eQTL, expression quantitative trait loci;
GWAS, genome-wide association study; SMR, summary-
data–based Mendelian randomization.
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QIMR, and 23andMe. These results showed an increased
number of associated gene expression and DNAm levels
(Table S4), although fewer SMR associations passed the HEIDI
test, which could be explained by increased heterogeneity in
LD patterns when meta-analyzing different datasets. Hence,
gene prioritization from these results is more challenging, and
we focus on the initial analysis results.

Relationships Between Gene Expression/DNAm
and ASD
We identi�ed 5 signi�cantly associated gene expression levels
in fetal brain associated with ASD at 17q21.31 that all passed
the HEIDI test (KANSL1, KANSL1-AS1, LRRC37A, LRRC37A2,
and pseudogene MAPK8IP1P2) (Figure 1C and Table S2).
Figure 3 shows that these eQTLs are located in a large region
of 1 Mb that includes multiple genes.

In the subsequent brain and blood analyses, an additional
locus at 20p11.2 was identi�ed in the brain mQTL and blood
eQTL data (Table S2 and Figure S4A, B). However, the iden-
ti�ed methylation and expression probes showed evidence for
linkage (pHEIDI , .05), suggesting that other causal variants are
present in this locus.

Relationships Between DNAm and Gene Expression
To gain more insight in the genes whose expression may be
in�uenced by the DNAm sites identi�ed in the analyses
described above, we performed additional SMR analyses to
link the DNAm levels to gene expression levels. This includes
DNAm sites identi�ed at 1p34.2 (Table S5) and 12q21.33
(Table S6) for ADHD. For ASD, we were not able to identify
DNAm sites with pleiotropic associations. At locus 1p34.2,
cg10881128 identi�ed in fetal brain showed evidence of
pleiotropic associations with PTPRF (pSMR = 2.3 3 1026,
pHEIDI = .19). Probe cg06373377, identi�ed in brain, showed
associations with 4 additional genes (TMEM125, TIE1, MED8,
HYI), although all four associations showed evidence of linkage
(analyzed in brain owing to absence in blood data). The two
probes identi�ed in blood, cg08959526 and cg13666471, were
related to ELOVL1 (pSMR = 9.2 3 1027, pHEIDI = .057) and
KDM4A (pSMR = 1.9 3 1026, pHEIDI = .070), respectively. At
locus 12q21.33, we identi�ed three methylation probes that all
showed associations for the same two genes: POC1B and
AC025034.1, a novel transcript that is antisense to ATP2B1.
However, these associations were not pleiotropic, as the HEIDI
tests were signi�cant.

Overlap Between ADHD and ASD
The associated gene expression and DNAm levels for ADHD
and those for ASD did not overlap. Nevertheless, shared
associated genes and DNAm sites may have remained un-
identi�ed because of limited power. To further investigate
possible shared biology between the two disorders, we esti-
mated in each tissue type the Spearman correlations between
the SMR betas, which represent the effect of the association
between the gene/DNAm site (when analyzing eQTLs or
mQTLs, respectively) and the phenotype. Note that in the
ADHD and ASD datasets, a different eQTL or mQTL can be
associated with the same probe because the strongest eQTL/
mQTL for each gene/DNAm site is selected in each dataset.
Biological Psychi
The identi�ed correlations were moderate, with 0.40, 0.32, and
0.29 (based on 758, 11,173, and 15,497 matched genes,
respectively) for the eQTL data of fetal brain, brain, and blood,
respectively, and 0.31, 0.30, and 0.29 (based on 7163, 91,054,
and 123,210 matched DNAm sites, respectively) for the mQTL
data of these three tissues, respectively.
DISCUSSION
In this study, we integrated ADHD and ASD GWAS results with
eQTL and mQTL variants measured in fetal brain, brain, and
blood to investigate if the effects of common genetic variants
related to ADHD and ASD are mediated by gene expression
and DNAm levels. We identi�ed multiple genes and DNAm
sites located at three genomic loci (1p34.2, 12q21.33, and
11p15.5) that showed association through pleiotropy at a
shared genetic variant with ADHD. For ASD, we identi�ed
several gene expression levels at 17q21.31 that showed
pleiotropic associations. These results facilitate the prioritiza-
tion of candidate genes within these loci. In addition, some of
the associated loci have not been associated in GWASs of
ADHD and ASD before, showing the ability of the current
method to identify novel genes related to these disorders.

We were especially interested in gene expression and
DNAm levels measured in fetal brain, because prenatal
mechanisms likely contribute to the development of ADHD
and ASD (25,26). The analyses of brain and blood revealed
additional associations, supporting that the higher statistical
power in these datasets can provide further insight in bio-
logical mechanisms driving the genetic associations (29,32).
A second strength of our current approach is the ability to
test if the associations are pleiotropic or induced by linkage,
while other methods like transcriptome-wide association
study (TWAS) cannot make this distinction, enabling us to
further reduce the number of candidate genes for follow-up
functional studies.

For ADHD, we prioritized multiple genes mapped to 1p34.2,
suggesting that several genes at this locus might be involved in
the development of ADHD. This locus includes the most
strongly associated genetic variants in the ADHD GWAS (5)
and is complicated by broad LD. Three other studies applied
different approaches to integrate the ADHD GWAS with gene
expression data (among them SMR, but applied to smaller
datasets) and identi�ed multiple other genes at this locus. The
single gene in common by all studies was MED8, which we
identi�ed in blood (no strong eQTLs present in [fetal] brain
datasets) and the other studies in the dorsolateral prefrontal
cortex (32,33), brain (34), adrenal gland (32), and blood (34) as
well. Liao et al. (33) showed in a TWAS of multiple brain regions
that MED8 association was speci�c to the dorsolateral pre-
frontal cortex, which might explain the absence of strong
eQTLs for this gene in our meta brain data. Although eQTLs
highly correlate across tissue types (29) and joint tissue ap-
proaches can improve gene prioritization for psychiatric dis-
orders (32), the observed discrepancies might point to tissue
speci�city of some expression regulation mechanisms. More-
over, a recent study reported strong cell type–speci�c effects
of eQTLs related to schizophrenia (35), which might become
diluted in analyses of bulk brain tissue. This suggests that
future studies of single-cell analyses might provide further
atry September 15, 2020; 88:470–479 www.sobp.org/journal 475
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insight in regulatory mechanisms at 1p34.2. Finally, we cannot
rule out that the discrepancies outlined above may be driven
by data-speci�c effects and differences in sample size.

At a second dense gene locus, 11p15.5, we prioritized two
long noncoding RNAs in blood eQTL data, of which
AP006621.5 has been related to ADHD before in analyses of
brain expression data (32,33) (close to signi�cance in our brain
analysis; no strong eQTLs present in fetal brain). Besides our
eQTL �ndings, we identi�ed DNAm sites at 12q21.33, a locus
that included associated variants in the ADHD GWAS (5),
although previous studies have not prioritized genes yet. We
now show that the associated variants likely in�uence DNAm
levels at several sites that are all related to the two genes,
POC1B and AC025034.1 (antisense transcript for ATP2B1),
although these associations might be induced by linkage. The
genes described for the three loci above are good candidates
for future functional studies to investigate their potential role in
the development of ADHD.

For ASD, the 5 genes identi�ed in fetal brain gene expres-
sion data map to 17q21.31, suggesting multiple causal signals
at this locus. The locus harbors a common inversion poly-
morphism containing many genes (36) and has been related to
a wide range of neurological disorders and traits, among them
intellectual disability (37), Alzheimer’s disease (38), Parkinson’s
disease (39), dyslexia (40), neuroticism (41), and intracranial
volume (42). All 5 gene expression levels were close to sig-
ni�cance in brain and blood, except blood expression of
KANSL1 and LRRC37A, despite increased statistical power of
these data, suggesting possible brain-speci�c effects of these
eQTLs. Although this locus was not identi�ed in the ASD
GWAS, a TWAS integrating ASD GWAS and brain expression
levels reported 10 genes in this region (43). Furthermore, a
TWAS of the PsychENCODE study (44), which measured gene
expression levels in postmortem brain from individuals diag-
nosed with autism, revealed an association with LRRC37A
only, although 9 additional genes were differentially expressed
after applying a different strategy utilizing ASD polygenic
scores. At 20p11.2, a locus including genome-wide signi�cant
genetic variants for ASD (6), we identi�ed associations be-
tween ASD and expression levels of XRN2, KIZ, and a DNAm
site. Nevertheless, other genes may be causally involved
because our results suggest that these associations were
introduced by linkage. Interestingly, a different gene at this
locus, NKX2-2, has been identi�ed by the TWAS in postmor-
tem autism brain (44) (NKX2-2 was only present in our brain
data, p = 4.19 3 1024), although their SMR analyses could not
�nd this association. For both loci, future studies are required
to investigate the relation of the prioritized genes and ASD in
more detail.

Although our �ndings provide insight into a possible
mechanism in which genetic variations exert their effects on
ADHD and ASD, our results showed that comparing analyses
in different tissues can be challenging. At several loci, the
analyses of the three tissue types prioritized different genes. A
tissue-speci�c nature of some eQTL and mQTL effects could
underlie these discrepancies, as we described above. How-
ever, it is important to note that differences, not only within our
analyses, but also with other studies, might be driven by data-
speci�c effects and sample size of the datasets. Previous
studies applying SMR to re�ne the genetic loci related to a
476 Biological Psychiatry September 15, 2020; 88:470–479 www.sobp
phenotype typically investigated one tissue type, and our study
demonstrates that these results should be interpreted with
caution, as possible discrepancies between different eQTL and
mQTL datasets remain unidenti�ed.

Even though we found associations of both gene expres-
sion and DNAm levels at the same regions, the SMR analyses
linking the identi�ed DNAm levels to gene expression levels
did not reveal consistent association signals, potentially
because of limited statistical power, or because of complex
genetic associations within a genetic locus harboring high
LD. Related to the latter, the statistical power of the HEIDI
test is limited by LD structure, because local LD is used to
distinguish pleiotropy from linkage. Hence, HEIDI is not al-
ways able to separate the two models when multiple causal
variants are present that are in high LD. Several of the loci
that include our identi�ed genes harbor broad LD and have a
high gene density. It may well be that these regions contain
multiple association signals that might be incorrectly detected
as heterogeneity by the HEIDI test. More research is needed
to address these complex genetic loci that might harbor
multiple signals that could act through different mechanisms.
New opportunities lie not only within denser genotyping, �ne-
mapping, computational approaches such as haplotype and
conditional analyses, and inclusion of more samples or
ancestry groups, but also in the emergence of high-
throughput assays and genome-editing experiments like
CRISPR (clustered regularly interspaced short palindromic
repeats)-Cas9 to evaluate the biological effects, considering
different cell types and cellular context (45).

One of the aims of our study was to investigate if shared
mechanisms contribute to both ADHD and ASD, as the dis-
orders have overlapping genetic factors (17–20). We could
not identify signi�cantly associated shared genes or DNAm
sites, but this may have been due to limited power. By
correlating the SMR associations, we identi�ed moderate
overlap in effects between ADHD and ASD. Notably, these
correlations were of equal strength as the estimated genetic
correlation of 0.36 (6) between the disorders. Although these
are different types of correlations, it might suggest that part of
the genetic correlation may be explained by variants acting
through the regulation of gene expression. Future studies are
needed to investigate the underlying overlapping biological
pathways in more detail.

In conclusion, we conducted an integrative analysis of
GWAS and eQTL and mQTL datasets for ADHD and ASD. We
identi�ed several genetic variants that show pleiotropic asso-
ciations with one of the disorders and gene expression levels
or DNAm levels, indicating that associated genetic variation
likely affects gene regulation. These results can facilitate the
prioritization of candidate genes implicated in disease etiology
and can inform functional follow-up studies that could poten-
tially lead to therapeutic strategies.
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