Pain Anxiety and its Association with Pain Congruence Trajectories During the Cold Pressor Task

Citation for published version (APA):

Document status and date:
Published: 01/04/2017

DOI:
10.1016/j.jpain.2016.11.013

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 16 Sep. 2023
Pain Anxiety and Its Association With Pain Congruence Trajectories During the Cold Pressor Task

Shannon M. Clark,* Annmarie Cano,* Liesbet Goubert,† Johan W. S. Vlaeyen,‡ Lee H. Wurm,* and Angelia M. Corley*

*Wayne State University, Detroit, Michigan.
†Ghent University, Ghent, Belgium.
‡KU Leuven, University of Leuven, Leuven, Belgium.

Abstract: Incongruence of pain severity ratings among people experiencing pain and their observers has been linked to psychological distress. Previous studies have measured pain rating congruence through static self-report, involving a single rating of pain; however, this method does not capture changes in ratings over time. The present study examined the extent to which partners were congruent on multiple ratings of a participant’s pain severity during the cold pressor task. Furthermore, 2 components of pain anxiety—pain catastrophizing and perceived threat—were examined as predictors of pain congruence. Undergraduate couples in a romantic relationship (N = 127 dyads) participated in this study. Both partners completed measures of pain catastrophizing and perceived threat before randomization to their cold pressor participant or observer roles. Participants and observers rated the participant’s pain in writing several times over the course of the task. On average, observers rated participants’ pain as less severe than participants’ rated their own pain. In addition, congruence between partners increased over time because of observers’ ratings becoming more similar to participant’s ratings. Finally, pain catastrophizing and perceived threat independently and jointly influenced the degree to which partners similarly rated the participant’s pain.

Perspective: This article presents a novel application of the cold pressor task to show that pain rating congruence among romantic partners changes over time. These findings indicate that pain congruence is not static and is subject to pain anxiety in both partners.

© 2016 by the American Pain Society

Key words: Pain, congruence, anxiety, threat, catastrophizing, romantic relationships, couples.
known about how pain anxiety in each person may correlated with congruence. Following the communal model of pain, pain catastrophizing and perceived threat reported by individuals in pain may be related to greater pain congruence for at least 2 reasons. First, both may result in greater pain behavior expression during the task, which could assist observers in estimating their partner’s pain. Second, pain anxiety in participants may prime observers to expect, through previous knowledge about the partner or observations made during the task, that the participant is in greater pain. A “sense of knowing” may also depend on the observer’s pain anxiety. For instance, anxiety in observers may reduce pain congruence in the current study. Observers who are generally worried about their partners’ pain, or who are fearful about their partners undergoing a painful task, may experience distress themselves. To regulate emotion, observers may defensively distance themselves from their partner’s pain which may result in greater incongruence as they tune out their partner’s pain signals or engage in other avoidant behaviors.

The aims of the current study were to examine 1) trajectories of pain congruence during a painful task, and 2) the extent to which these trajectories were influenced by pain anxiety in observers and people experiencing pain. On the basis of the congruence literature, participants completing the cold pressor task were expected to provide higher pain ratings than those provided by their observing partners. It was expected that both partners’ pain ratings would become more congruent over time, because the observing partner would develop a greater sense of knowing by viewing their partner’s behaviors over time. We expected a curvilinear trajectory in congruence on the basis of previous research with individuals undergoing the cold pressor task. Participant and observer pain anxiety variables were expected to relate to congruence, albeit in different directions. Little is known regarding the extent to which these indicators of pain anxiety contribute to congruence. This lack of knowledge hinders efforts to identify individual and observer characteristics that affect “sense of knowing” and the attendant responses that can enhance or inhibit pain coping.

Methods

Participants

This study was approved by the university’s institutional review board and participants and their partners provided informed consent. Participants were 268 individuals (134 romantic dyads) who were enrolled at Wayne State University or were significant others of an undergraduate student. Participants were recruited for a larger study via an online registration. Student participants were eligible to receive extra credit in their psychology courses for participation. Partners who were not enrolled in courses did not receive compensation. To minimize risk, participants were not eligible to undergo the cold pressor task if they reported a blood circulation problem (e.g., diabetes or Raynaud syndrome). Before arrival, participants were screened via telephone and not recruited if they reported a chronic pain condition.

To differentiate between roles assigned to partners, the term “participant” will refer to individuals who completed the cold pressor task, and “observer” will refer to individuals who watched their partner undergo the task via a live video feed playing in an adjacent room. Approximately 52% (n = 70) of the couples had female participants complete the cold pressor task, and approximately 55% (n = 73) of the couples had a male observer. Because of the small number of same-sex couples enrolled in the study (7 of 134), these gender percentages are not complementary to each other. The average length of time that the couples reported being together was 26.94 months (SD = 25.78). See Table 1 for additional demographic information.

Measures

Demographic Information

Participants and observers reported gender, race, ethnicity, age, relationship status, relationship length, highest education level obtained, and employment status for descriptive purposes.

Potential Covariates

At baseline, participants and observers completed the Couples Satisfaction Index, a measure of relationship satisfaction, and a subscale of the Interpersonal Reactivity Scale that measures empathic concern. These

<table>
<thead>
<tr>
<th>Table 1. Sample Demographic Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIABLE</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Gender</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Race/ethnicity</td>
</tr>
<tr>
<td>Caucasian</td>
</tr>
<tr>
<td>African American</td>
</tr>
<tr>
<td>Asian American</td>
</tr>
<tr>
<td>Native American</td>
</tr>
<tr>
<td>Pacific Islander</td>
</tr>
<tr>
<td>Middle Eastern</td>
</tr>
<tr>
<td>Hispanic/Latino</td>
</tr>
<tr>
<td>Education</td>
</tr>
<tr>
<td>College experience</td>
</tr>
<tr>
<td>High school diploma (no college experience)</td>
</tr>
<tr>
<td>Graduate school experience</td>
</tr>
</tbody>
</table>

MEAN	**SD**	**MEAN**	**SD**	
Age	22.89	6.11	22.73	5.72
Relationship Satisfaction	5.56	2.17	5.50	2.19
Empathic Concern	20.37	4.14	20.13	4.52
Perceived Threat Prior to Task	11.08	9.33	11.69	9.01
Baseline Pain Catastrophizing	17.78	10.24	18.55	9.92

NOTE. Higher scores on relationship satisfaction and empathic concern indicate increased levels of variables reported.
scales were included for descriptive purposes and as potential covariates because these variables could conceivably be related to congruence.

Pain Catastrophizing

The Pain Catastrophizing Scale (PCS), a 13-item measure, was administered to both partners to provide a baseline pain catastrophizing score. The PCS measures the extent to which an individual, in general, has a tendency to ruminate, magnify, or feel helpless about pain. Scores on this measure range from 0 to 52, and items include statements like, "I worry all the time about whether the pain will end," and "I become afraid that the pain may get worse."

Perceived Threat

Participants and observers completed 4 questions aimed to assess the extent to which both partners felt threatened and fearful about the task (eg, "How anxious or tense are you about doing the cold water task?"). Observers received questions that emphasized that they would be reporting on their own expected threat regarding their partner who was about to complete the task (eg, "Right now, how anxious or tense are YOU about your partner doing the cold water task?"). The measure used an 11-point Likert scale (0 = "Not at all", 10 = "Very much") and is adapted from a state threat measure in other studies investigating pain rating congruence between parents and children. The 4 items yielded a total score representing the participant’s or observer’s perceived threat of pain. Average scores on measures of relationship satisfaction, empathic concern, baseline pain catastrophizing, and perceived threat before the task, for participants and observers, are listed in Table 1.

Pain Intensity

Pain intensity was measured during the cold pressor task while the participant had their hand submerged and the observer watched from an adjacent room. Participants and observers rated levels of pain intensity on an 11-point scale. Responses were numeric with 0 representing "no pain" and 10 representing "extreme pain." When a tone alerted them to do so, they were asked to record in writing pain intensity at that current moment. Tones were sounded every 10 seconds for the first 40 seconds and every 20 seconds thereafter. Pain congruence was calculated by subtracting the observer pain rating score from the participant pain rating score at each interval. Thus, each dyad had at most 8 "pain difference" or congruence scores. Average ratings of pain intensity for participants and observers are provided in Table 2.

Table 2. Mean Participant and Observer Pain Ratings According to Time Point

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant</td>
<td>5.13 (2.86)</td>
<td>5.68 (2.71)</td>
<td>6.51 (2.50)</td>
<td>7.09 (2.44)</td>
<td>7.45 (2.33)</td>
<td>7.44 (2.16)</td>
<td>7.05 (2.36)</td>
<td>6.69 (2.79)</td>
</tr>
<tr>
<td>Observer</td>
<td>2.89 (2.86)</td>
<td>3.26 (2.87)</td>
<td>3.96 (2.81)</td>
<td>4.54 (2.88)</td>
<td>4.91 (2.95)</td>
<td>5.09 (3.04)</td>
<td>5.27 (2.94)</td>
<td>5.09 (3.02)</td>
</tr>
<tr>
<td>Pain difference</td>
<td>2.27 (2.75)</td>
<td>2.26 (2.73)</td>
<td>2.23 (2.67)</td>
<td>2.24 (2.66)</td>
<td>2.22 (2.69)</td>
<td>2.25 (2.71)</td>
<td>2.32 (2.74)</td>
<td>2.35 (2.75)</td>
</tr>
</tbody>
</table>

NOTE: Data are presented as mean (SD).
bucket of room temperature water to ensure that baseline temperatures were equivalent across participants. Observers were escorted to an adjacent room where they were told they would be observing their partners completing the task through a live video feed and rating their partners’ pain whenever a tone sounded. Observers could view participants from their hips up, including emitted facial expressions and upper body movements. Participants were asked to keep their hand still in the basin and submerged at the wrist. Participants were asked to remain seated for the duration that they were able to keep their hand submerged. The participant’s hand was visible to them while submerged.

The cold pressor task was assembled using a Techne brand (Bibby Scientific Ltd, Burlington, NJ) flow dip cooler (model RU-200), thermoregulator (model TE-10D), and stainless steel basin. Participants were instructed to place 1 hand into the steel basin. Water in the basin flowed through a flow dip cooler, which extracts heat. A thermoregulator circulated the water and controlled the temperature, which was set to 6°C (43°F). Participants were also asked to fix their gaze on a piece of paper on the wall while completing the task. When a repeating tone sounded, participants and observers provided written ratings of the levels of pain intensity for the participant with their hand in the basin.

Participants were not told that the maximum time that their hand could be submerged was 2 minutes. Participants were permitted, however, to remove their hand if they could no longer withstand pain from the cold pressor. The number of participants who withdrew their hand could be submerged was 2 minutes. Participants completing the cold pressor task. Multilevel modeling analyses were conducted because multiple ratings of pain congruence were available for each couple (ie, “pain difference” or congruence scores were nested within couples). That is, the dependent variable was the pain difference score which was calculated at each interval. Congruence scores were created by calculating the raw difference between the participant and observers’ pain ratings at each time point. An absolute difference score was initially considered; however, an absolute difference measure obscures the pattern we found with observers underestimating participants most of the time. On average, observers significantly underestimated participant pain. Participants, on average, rated their pain 2.29 points higher than those provided by the participants completing the cold pressor task. Multilevel modeling analyses were conducted because multiple ratings of pain congruence were available for each couple (ie, “pain difference” or congruence scores were nested within couples). That is, the dependent variable was the pain difference score which was calculated at each interval. Congruence scores were created by calculating the raw difference between the participant and observers’ pain ratings at each time point. An absolute difference score was initially considered; however, an absolute difference measure obscures the pattern we found with observers underestimating participants most of the time. On average, observers significantly underestimated participant pain. Participants, on average, rated their pain 2.29 points higher than their observing partners on an 11-point scale, b = 2.29, standard error (SE) = .24, t125.1 = 9.49, P < .001. The figures account for this trend and provide an average estimation for the entire group about the trends for pain congruence.

Pain rating congruence was also predicted to increase over the course of the task. In previous studies, individual pain ratings have followed a curvilinear trajectory.12,26,41 Thus, linear and quadratic effects of time were included in the multilevel model. A significant relationship was found between pain rating congruence and curvilinear time, b = −.0002, SE = .0004, t549.4 = −4.93, P < .001 (see Fig 1). Congruence between pain ratings initially decreased (ie, “pain difference” between both partners’ pain ratings became larger) before increasing over the 2-minute interval.

Further inspection of each partner’s data separately shows that the curvilinear trajectory in congruence is due, in part, to different pain rating trajectories for

Results

Preliminary and Descriptive Analyses

A total of 7 couples (5.22%) were removed from the data set for missing data. Four dyads were removed because of 1 or both partners missing more than 10% of the items measuring pain anxiety (ie, pain catastrophizing and perceived threat). The remaining 3 couples were removed because of 1 or both partners missing 10% or more of the items on surveys assessing for potential covariates (ie, relationship satisfaction and empathy). Missing data analyses did not reveal systematic patterns of missing data. Thus, 127 couples were included in the analyses. Correlations were conducted for descriptive purposes. A significant relationship was found between participant and observer perceived threat, r127 = .22, P < .05. Greater observer pain catastrophizing, however, was significantly related to greater observer empathy, r127 = .26, P < .01. No such relationship was found between participant pain catastrophizing and participant perceived threat, r127 = .21, P < .05. Pain rating congruence was not significantly related to relationship satisfaction or empathy; thus, these potential covariates were not included in further analyses.

Participant-Observer Pain Rating Congruence

It was expected that observers would, on average, report lower pain ratings than those provided by the participants completing the cold pressor task. Observers rated their partner’s pain intensity at the same time intervals as the participants undergoing the task. When the cold pressor task was completed, the couple was debriefed on the experiment and allowed to ask further questions.

Table 3. Number of Participants Who Had Withdrawn Their Hand From the Cold Pressor According to Time Point

<table>
<thead>
<tr>
<th>Time Interval, Seconds</th>
<th>Total Number of Participants With Hand Withdrawn</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>40</td>
<td>19</td>
</tr>
<tr>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>100</td>
<td>44</td>
</tr>
<tr>
<td>120</td>
<td>46</td>
</tr>
</tbody>
</table>
participants and observers. Multilevel modeling analyses showed a role (participant vs observer) according to quadratic time interaction \((b = -0.0002, SE = 0.00005, t_{1,000} = -4.88, P < .001)\). Further analyses of each partner's pain ratings over time showed significant quadratic effects of time (participant: \(b = -0.0006, SE = 0.00003, t_{590.5} = -20.99, P < .001\); observer: \(b = -0.0004, SE = 0.00004, t_{562.8} = -10.43, P < .001\)). Participant and observer pain rating trajectories are shown in Fig 2. Although participants reported higher scores overall, observers' reports became more similar to participants' reports starting at the 80-second mark of the task.

Pain Anxiety and Congruence

Participants' Pain Anxiety

Multilevel modeling analyses were again implemented to test if participant pain catastrophizing or perceived threat were related to pain rating congruence. Neither of the participants' indicators of pain anxiety was related to congruence on average (ie, the main effects of these variables were not significant). However, participant perceived threat interacted with the quadratic effect of time to influence congruence, \(b = 0.00001, SE = 0.000007, t_{690.9} = 2.11, P = .03\). Fig 3 shows that pain rating congruence trajectories were different for participants reporting lower and higher perceived threat scores. At lower levels of threat, congruence followed a similar curvilinear trajectory as reported earlier (ie, slight decrease in congruence followed by greater congruence further along in the task). However, higher levels of perceived threat were related to a steady and steep increase in congruence throughout the cold pressor task. Participant pain catastrophizing was not related to congruence even when including the effect of time.

Observer Pain Anxiety

Neither observer perceived threat nor observer pain catastrophizing predicted congruence. The main effects of these 2 variables were not significant and neither were the interactions that included linear and quadratic time.

Figure 1. Pain rating congruence over the course of the task. Lower pain difference scores indicate greater congruence.

Figure 2. Participants' and observers' individual pain ratings over time.

Figure 3. Pain rating congruence over time related to high and low perceived threat in the participant. Lower pain difference scores indicate greater congruence. Participants and observers considered as reporting high threat were +1 SD above the sample mean perceived threat score and participants and observers considered low threat were −1 SD.
Participant and Observer Pain Anxiety Interactions

Finally, multilevel modeling analyses were used to test for interactions between pain catastrophizing and perceived threat within and between partners. For participants and observers, one’s own pain catastrophizing did not significantly interact with one’s own perceived threat to predict congruence. No significant interactions between participant and observer perceived threat were found.

However, a significant interaction was detected between participant and observer pain catastrophizing over time in predicting congruence (see Fig 4), $b = .000002, SE = .0000006, t_{708} = 2.41, P = .02$. Among participants reporting lower levels of pain catastrophizing, greater observer catastrophizing was associated with initial increases in pain rating difference (ie, couples become more incongruent before becoming more similar near the end of the task). However, among participants reporting lower levels of pain catastrophizing, lower observer pain catastrophizing was associated with more rapid pain rating congruence. Similarly, among participants with higher levels of catastrophizing, greater observer catastrophizing was associated with a quick increase in pain rating congruence (ie, couples became steadily similar over time). Among participants with higher levels of catastrophizing, lower observer catastrophizing was associated with an initial decreased pain rating congruence (ie, couples gradually became more dissimilar in pain ratings until the middle of the task). In other words, mismatches in participant-observer catastrophizing scores appeared to result in pain rating differences becoming more incongruent during the task. Matching levels of pain catastrophizing appeared to result in greater and more rapid congruence over the course of the task.

Discussion

Pain empathy models suggest that observers develop a “sense of knowing” about another’s pain, in part, by observation. However, previous research on pain congruence has focused predominantly on static measures of pain (ie, single assessments of pain ratings at rest), often on the basis of recall and not observational methods. Thus, it has been difficult to know how one’s sense of knowing about another’s pain may change over time, especially as a result of viewing a partner during painful tasks or activities. An aim of the current study was to assess and track pain rating congruence in a manner that could account for in-the-moment changes that may occur during a painful task. The current findings replicated existing work with clinical samples, which has reported that patient pain ratings are frequently underestimated by spouses, family members, and health care providers. Consistent with the literature, participants in the present study assigned a higher rating to their own pain than their observing partners assigned to the participants. The current study also extended existing work by examining temporal changes in pain congruence. As expected, both partners’ ratings became more similar over time. At the early stages of the task, partners became gradually dissimilar in their pain ratings, decreasing in congruence. However, by the end of the task, partners became more congruent. Greater congruence over time...
appeared to be due to observing partners “meeting” the participants in pain ratings, which supports the idea that the observers’ knowledge of their partner’s pain increased by viewing their partners engage in the task over time. Thus, congruence during the cold pressor task follows a dynamic course, one that was not observable in studies of static pain ratings. Further research is needed to see if a similar trajectory is observed during other types of painful tasks and during the course of activities for those with chronic pain.

Models of pain empathy have suggested that characteristics of observers and people with pain influence observers’ sense of knowing about pain. Indeed, the findings of this study support this model by showing that pain anxiety in both partners was correlated with pain congruence. Pain catastrophizing and perceived threat were examined as correlates of interest because of the extensive research on pain anxiety and outcomes. For instance, pain catastrophizing is related to more intense pain in experimental and clinical studies, and perceived threat is associated with hypervigilance, negative physical responses to pain, and lower pain tolerance. Among participants, it was expected that pain catastrophizing and perceived threat would serve a communicative role and result in increased pain rating congruence. However, only participant perceived threat (ie, the participant’s reported fear of the task before the task) interacted with time in predicting congruence. Couples in which the participants reported higher threat became more congruent over the task. Couples in which participants reported lower threat were more likely to report similar pain ratings at the onset of the task but became more dissimilar by the middle of the task. Notably, other dyadic studies investigating the effects of threat have also reported that pain appraisals influence the experience of pain.

Future work could explore the extent to which expressed pain behavior may explain the rapid increase in congruence among couples in which participants report higher threat. It was hypothesized that observers’ pain catastrophizing or perceived threat would predict a greater defensive distancing response, resulting in less congruence. This hypothesis was largely not supported as observers’ pain anxiety did not predict congruence (except as it interacted with participants’ anxiety). Yet, in a study of parent-child dyads, parental catastrophizing was reported to be related to increased congruence, perhaps because parents who catastrophized were more vigilant about pain cues. It is possible that the study’s design (ie, participant and observers were already physically distant by being placed in separate rooms) prevented a complete test of the defensive distancing hypothesis. Perhaps, it would be more likely to find evidence of defensive distancing in a design in which both partners were present in the same room or with chronic pain samples, for whom the threat of pain would be more distressing to observers. Continued exploration is needed to explore the mechanisms through which observer anxiety may contribute to incongruence.

Limitations

Although the results of the present study extend our understanding of the time course and correlates of pain congruence, some limitations must be considered. In the current study, the observer was not present in the room with the participant undergoing the cold pressor task. An advantage of this strategy was that it eliminated the potential for interference from the observer, which would have prevented a “clean” examination of congruence. Because other studies have included both partners present in the same room while one partner undergoes a painful task, it may be useful to examine how partner presence may alter the trajectory of pain congruence, specifically its influence on the effects of observer anxiety previously mentioned.

The data were collected from an undergraduate, nonclinical population. Research is needed to test whether the findings are replicable in longer-term relationships, relationships in which 1 partner has a chronic condition, and in nonromantic relationships (eg, patient-provider congruence) samples. This study was also limited to a 2-minute time interval, which may not reflect the time course of pain for individuals who suffer from chronic pain or are engaging in activities of longer duration. Finally, codeable video recordings were not available for
this study. Researchers are encouraged to use this paradigm and capture high-quality video to test the hypothesis that pain anxiety may contribute to pain behaviors that observers may use to estimate the pain of their partners. Furthermore, congruence trajectories in other forms of experimentally-induced pain as well as clinical acute and chronic pain should be explored.

Conclusions
In the real world, observers develop a sense of knowing about their partners’ pain by observing their loved ones engaging in daily life tasks. Therefore, it is necessary that researchers assess pain congruence using methods that account for the changing nature of pain during painful tasks. In the current study, the cold pressor task was used as an experimental acute pain task to show that pain ratings and congruence scores do indeed change during the course of a painful task. It is possible that a similar approach could be used to assess pain congruence among patients and observers, including health care providers and loved ones, during exercise or other activities to better understand the manner in which observers’ sense of knowing about another’s pain is developed. Clinically, such pain rating activities may be used as a basis for conversations about pain communication to enlighten people with pain about how their pain anxiety may affect their communication about pain to others and how observers interpret and respond to pain.

Researchers are encouraged to examine pain anxiety (pain catastrophizing and perceived threat) as well as other emotional states (eg, depressed mood), other components of pain anxiety (eg, physiological reactions, avoidance behaviors, and pain beliefs),20 and behaviors (eg, solicitous responses, empathic behaviors) as correlates of congruence. The current study contributes to the pain empathy literature by providing pain researchers a novel approach of assessing pain rating congruence that uses existing methodologies and analytic tools: a standardized experimental pain task and multilevel modeling. In addition, the knowledge that time and pain anxiety in both partners can alter the course of pain rating congruence provides support for pain empathy models and suggests that future researchers should examine the consequences of enhanced congruence and how congruence may be enhanced by working with both partners.

Ultimately, a better understanding of pain rating congruence can lead researchers to investigate the extent to which it is associated with health and well-being among people with pain and their loved ones.

References
7. Davis MH: A multidimensional approach to individual differences in empathy. JSAS Catalog of Selected Documents in Psychology 10:85, 1980

