Standardisation of PR3-ANCA and MPO-ANCA

Citation for published version (APA):

Document status and date:
Published: 01/11/2020

DOI:
10.1136/annrheumdis-2020-217416

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 17 Sep. 2023
Standardisation of PR3-ANCA and MPO-ANCA: evaluation of certified reference materials

Antineutrophil cytoplasmic antibodies (ANCAs) are important laboratory markers to support the diagnosis of ANCA-associated vasculitis. A 2017 international consensus states that high-quality immunoassays for proteinase-3 (PR3)-ANCA and myeloperoxidase (MPO)-ANCA can be used as the primary screening method for patients suspected of having granulomatous disease with polyangiitis or microscopic polyangiitis.1

Efforts have been undertaken to standardise PR3-ANCA and MPO-ANCA measurements. More than 10 years ago, PR3-ANCA and MPO-ANCA reference standards have been prepared (from single patients) under the umbrella of the International Union of Immunological Societies (IUIS) and are available through the Autoantibody Standardization Committee (www.AutoAb.org). Several companies are using these reference standards (assigned value: 100IU/mL) to calibrate their assays, such as Svar Life Science (ELISA), Thermo Fisher Scientific (fluoroenzyme immunoassay (FEIA)), Medipan (CytoBead assay) and Inova Diagnostics (chemiluminescence assay (CLIA)).

The Institute for Reference Materials and Measurements (IRMM) recently released certified reference materials for MPO-ANCA (ERM-DA476/IFCC) and for PR3-ANCA (ERM-DA483/IFCC).2 3 Both reference materials are based on plasmapheresis samples from single patients. We evaluated whether using the IRMM-certified reference materials aligns results for PR3-ANCA and MPO-ANCA across assays.

A random selection of 98 serum samples covering low, medium and high PR3-ANCA or MPO-ANCA levels from the Leuven and the Maastricht cohort included in the international EUVAS study4 were distributed to five manufacturers, together with the PR3-ANCA and MPO-ANCA certified reference materials and dilutions thereof (obtained from I. Zegers, IRMM). The manufacturers performed the analyses using the IRMM reference materials as standards and reported results in mass units (µg/L). The immunoassays included were from Inova (QUANTA Flash (CLIA)) and (QUANTA Lite (ELISA)), Euroimmun (ELISA), GA Generic Assays (ELISA), Orgentec (ELISA) and Thermo Fisher Scientific (ElIA (FEIA)).

The results are shown in figure 1. Overall, results obtained with the different assays were in the same order of magnitude. For PR3-ANCA, the best correlations were found between the ELISAs from Euroimmun, Inova Diagnostics and GA Generic Assays (Spearman’s rs > 0.89). For other comparisons, such as between automated FEIA and automated CLIA, the correlation was poor (0.44). For MPO-ANCA, the best correlations were found between the ELISAs from Inova Diagnostics and GA Generic Assays (0.84) and between the ELISA from Euroimmun and FEIA from Thermo Fisher Scientific (0.82). Differences in analytical measuring ranges (AMRs) as well as significant portions of specimens outside the AMR for some assays likely contribute to the low agreement between assays. Concordance between the different assays is shown in online supplementary figure 1. For PR3-ANCA, 39/98 and 46/98 samples were concordant positive and negative, respectively, with all assays. For MPO-ANCA, 21/98 and 74/98 samples were concordant positive and negative, respectively, with all assays.

Taken together, using the certified reference material for PR3-ANCA and MPO-ANCA squeezes test results within the same order of magnitude. However, depending on the assays compared, differences and poor correlation between individual results remain. This is in agreement with a previous study reporting that the majority of assays do not give comparable ANCA values, including assays calibrated on the IUIS reference standards.3

Reporting results in mass units might give the false impression of a correct and conclusive result that is interchangeable between methods. We, however, found that ANCA results are only partly exchangeable. ANCA from different patients may differ from each other and from the reference material in terms of avidity, glycosylation status, subclass distribution and epitope specificity and many factors may affect quantitation of autoantibodies (the autoantigen, the way the autoantigen is immobilised to a solid phase, the coupling medium, the incubation medium, the conjugate and the detection method). The reference material might not be commutable across all methods. Consequently, assigning mass units to autoantibodies with clinical assays is intricate. Therefore, we propose that values should not be reported as mass units but rather as mass unit equivalents or arbitrary units. Using of terminology other than mass units does not resolve the issue. Reporting results in mass units might give the false impression that results are fully interchangeable. Using a common calibrator does not guarantee a common clinical interpretation, as has been demonstrated for rheumatoid factor assays.6

Xavier Bossuyt,1 Doreen Dillaerts,1 Michael Mahler,2 Dirk Roggenburch,3,4 Ulrich Leinfelder,5 Friederike Hammar,5 Wolfgang Schlumberger,6 Nina Olschowka,7 Jan Damoiseaux8

1Department of Microbiology and Immunology, KU Leuven and Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
2INOVA Diagnostics, San Diego, California, USA
3Medipan GmbH, Dahlewitz/ Berlin, Germany
4Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Brandenburg, Germany
5Orgentec Diagnostika GmbH, Mainz, Germany
6Euroimmun AG, Lubeck, Germany
7Thermo Fisher Scientific, Phadia GmbH, Freiburg, Germany
Figure 1 Correlations of individual values of PR3-ANCA (panel A) and MPO-ANCA (panel B) measured by six different immunoassays calibrated with the PR3-ANCA and MPO-ANCA certified reference material from the Institute for Reference Materials and Measurements. Spearman’s rank correlation coefficients (rs) are shown in the insert on the graph. The immunoassays included were Inova QUANTA Flash CLIA (1) and QUANTALite ELISA (2), Euroimmun ELISA (3), GA Generic Assays ELISA (4), Orgentec ELISA (5) and Thermo Fisher FEIA (EliA) (6). The samples (n=98, open circles) were from the Leuven and Maastricht cohort included in the EUVAS study4 and selected such that low, medium as well as high antibody levels for PR3-ANCA and MPO-ANCA were represented. Panel A: the PR3-ANCA certified reference material (269.9 µg/L) and dilutions thereof (161.1, 106.7, 53.7 and 26.8 µg/L) are represented by triangles. Panel B: the certified MPO-ANCA reference material (83.7 µg/L) and dilutions thereof (50.2, 33.5, 17.1 and 8.4 µg/L) are represented by triangles. The analyses were performed by the manufacturers and results were reported in µg/L based on the certified reference material. Detailed statistical data on Spearman’s correlation and passing Bablok fit are given in the online supplementary table 1.

ANCA, antineutrophil cytoplasmic antibodies; CLIA, chemiluminescence assay; FEIA, fluoroenzyme immunoassay.
Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, Netherlands

Correspondence to Dr Xavier Bossuyt, KU Leuven University Hospitals Leuven, 3000 Leuven, Belgium; xavier.bossuyt@uzleuven.be

Handling editor Josef S Smolen

Acknowledgements We thank Ingrid Zegers and Evanthia Monogioudi (European Commission, Joint Research Centre, Geel, Belgium) for providing the reference materials and for helpful discussions. We thank Euroimmun AG, Inova Diagnostics, Medipan GmbH, Orgetec Diagnostika GmbH and Thermo Fisher Scientific for performing the analyses.

Contributors XB and JD designed the study. DD analysed the data. MM, DR, UL, FH, WS and NO helped with the analyses. All authors reviewed the manuscript and provided input.

Funding This study was funded by Euroimmun AG, Inova Diagnostics, Medipan GmbH, Orgetec Diagnostika GmbH, Thermo Fisher Scientific.

Competing interests XB has received speaker fees from Thermo Fisher Scientific and Inova, has been a consultant for Thermo Fisher Scientific and Inova and has received research support from Thermo Fisher Scientific. JD has received speaker fees from Thermo Fisher Scientific, Euroimmun and Inova. MM is employed by Inova Diagnostics, WS received personal fees from Euroimmun, NO is employed by Thermo Fisher Scientific, FH and UL are employed by Orgentec, DR received personal fees from Medipan and Generic Assays.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting or dissemination plans of this research.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

© Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.

Received 25 March 2020
Revised 11 May 2020
Accepted 15 May 2020
Published Online First 16 June 2020

ORCID iDs
Xavier Bossuyt http://orcid.org/0000-0001-6856-8485
Michael Mahler http://orcid.org/0000-0002-7919-0948
Jan Damoiseaux http://orcid.org/0000-0003-4007-6985

REFERENCES