Choreatic Side Effects of Deep Brain Stimulation of the Anteromedial Subthalamic Nucleus for Treatment-Resistant Obsessive-Compulsive disorder

Citation for published version (APA):

Document status and date:
Published: 01/08/2017

DOI:
10.1016/j.wneu.2017.05.067

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 17 Sep. 2023
Choreatic Side Effects of Deep Brain Stimulation of the Anteromedial Subthalamic Nucleus for Treatment-Resistant Obsessive-Compulsive disorder

Anne E.P. Mulders1,2, Albert F.G. Leentjens2, Koen Schruers2, Annelien Duits2, Linda Ackermans1, Yasin Temel1,2,3,4

Key words
- Deep brain stimulation
- Obsessive-compulsive disorder
- Side effects
- Subthalamic nucleus
- Ventral capsule/ventral striatum

Abbreviations and Acronyms
DA: Dopamine
DBS: Deep brain stimulation
MRI: Magnetic resonance imaging
NAc: Nucleus accumbens
OCD: Obsessive-compulsive disorder
PD: Parkinson disease
STN: Subthalamic nucleus
VC/VS: Ventral capsule/ventral striatum
Y-BOCS: Yale-Brown Obsessive Compulsive Scale

BACKGROUND: Patients with treatment-resistant obsessive-compulsive disorder (OCD) are potential candidates for deep brain stimulation (DBS). The anteromedial subthalamic nucleus (STN) is among the most commonly used targets for DBS in OCD.

CASE DESCRIPTION: We present a patient with a 30-year history of treatment-resistant OCD who underwent anteromedial STN-DBS. Despite a clear mood-enhancing effect, stimulation caused motor side effects, including bilateral hyperkinesia, dyskinesias, and sudden large amplitude choreatic movements of arms and legs when stimulating at voltages greater than approximately 1.5 V. DBS at lower amplitudes and at other contact points failed to result in a significant reduction of obsessions and compulsions without inducing motor side effects. Because of this limitation in programming options, we decided to reoperate and target the ventral capsule/ventral striatum (VC/VS), which resulted in a substantial reduction in key obsessive and compulsive symptoms without serious side effects.

CONCLUSIONS: Choreatic movements and hemiballismus have previously been linked to STN dysfunction and have been incidentally reported as side effects of DBS of the dorsolateral STN in Parkinson disease (PD). However, in PD, these side effects were usually transient, and they rarely interfered with DBS programming. In our patient, the motor side effects were persistent, and they made optimal DBS programming impossible. To our knowledge, such severe and persistent motor side effects have not been described previously for anteromedial STN-DBS.

INTRODUCTION

Obsessive-compulsive disorder (OCD) is characterized by the repeated occurrence of upsetting obsessions or compulsions that are related to substantial dysfunction in multiple domains of life. Despite intensive psychotherapeutic and pharmacologic treatments, a significant proportion of patients fail to respond to therapy. Patients with treatment-resistant OCD are potential candidates for deep brain stimulation (DBS). The ventral capsule/ventral striatum (VC/VS), the nucleus accumbens (NAc), and the anteromedial limbic portion of the subthalamic nucleus (STN) are among the most common DBS targets for OCD. The aim of DBS is to tailor the treatment on a patient-specific basis to deliver optimal therapeutic effects while avoiding stimulation-associated side effects. Minor complications have been reported, of which the majority were time limited and reversed by adjusting the stimulation settings. We present significant stimulation-associated side effects following DBS of the anteromedial STN that have not been described previously and that required reimplantation to an alternative target— the VC/VS.

CASE DESCRIPTION

A 47-year old woman with refractory OCD was referred to our hospital for DBS. The patient had OCD since the age of 15, and it was characterized clinically by intrusive thoughts about dirt, accompanied with excessive cleaning, washing, and checking compulsions that occupied the entire day. In addition, the patient experienced a lowered mood, anhedonia, and occasional panic attacks, though failing to meet the
ANNE E.P. MULDERS ET AL. CHOREATIC SIDE EFFECTS OF STN DBS IN AN OCD PATIENT

Table 1. Patient Characteristics and Stimulation Settings

<table>
<thead>
<tr>
<th>Medication Used Before Surgery*</th>
<th>Clomipramine</th>
<th>Haloperidol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sertraline</td>
<td>Oxazepam</td>
<td></td>
</tr>
<tr>
<td>Citalopram</td>
<td>Fluoxetine</td>
<td></td>
</tr>
<tr>
<td>Mirtazapine</td>
<td>Venlafaxine</td>
<td></td>
</tr>
<tr>
<td>Paroxetine</td>
<td>Aripiprazol</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target Coordinates</th>
<th>STN</th>
<th>VC/VS</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Y</td>
<td>0</td>
<td>12.8(L)/12.7(R)</td>
</tr>
<tr>
<td>Z</td>
<td>-4</td>
<td>-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stimulator Settings</th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tested STN DBS settings†</td>
<td>1- C+, 90 µs, 130 Hz</td>
<td>9- C+, 90 µs, 130 Hz</td>
</tr>
<tr>
<td>2- C+, 90 µs, 130 Hz</td>
<td>10- C+, 90 µs, 130 Hz</td>
<td></td>
</tr>
<tr>
<td>3- C+, 90 µs, 130 Hz</td>
<td>11- C+, 90 µs, 130 Hz</td>
<td></td>
</tr>
<tr>
<td>1- 2+, 90 µs, 130 Hz</td>
<td>9- 10+, 90 µs, 130 Hz</td>
<td></td>
</tr>
<tr>
<td>2- C+, 90 µs, 130 Hz</td>
<td>9- C+, 90 µs, 130 Hz</td>
<td></td>
</tr>
<tr>
<td>0- C+, 90 µs, 130 Hz</td>
<td>8- C+ 90 µs, 130 Hz</td>
<td></td>
</tr>
</tbody>
</table>

| Final VC/VS DBS settings | 1- 2- 3- C+, 3.4 V, 90 µs, 130 Hz | 9- 10- 11- C+, 3.4 V, 90 µs, 130 Hz |

<table>
<thead>
<tr>
<th>Y-BOCS</th>
<th>Preoperative</th>
<th>Postoperative VC/VS 1 year FU</th>
<th>Postoperative VC/VS 2 year FU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Postoperative VC/VS 1 year FU</td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>Postoperative VC/VS 2 year FU</td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

| STN, subthalamic nucleus; VC/VS = ventral capsule/ventral striatum; DBS, deep brain stimulation; Y-BOCS, Yale-Brown Obsessive Compulsive Scale; FU, follow-up. *Medication used before surgery refers to all the different pharmacologic trials conducted since the patient was first treated until the first surgery. Adequate doses of these drugs were maintained for at least 12 weeks. †Distance from midanterior/posterior commissure in millimeters. ‡Voltages were slowly increased with every setting. Dyskinesias occurred at voltages between 1.5 and 2.1 V. |
Medtronic). See Table 1 for final target coordinates. Postoperative imaging showed adequate placement of the electrodes at the planned target (Figure 1). After programming and additional psychotherapeutic therapy, therapeutic effect was achieved without inducing serious side effects. See Table 1 for stimulation parameters. One year postoperatively, the patient’s Y-BOCS score was 29; 2 years postoperatively, the score was 17, a reduction of 50% compared with baseline. At present, the patient reports a stabilization of daily life routines and improved quality of life.

DISCUSSION

This case illustrates that DBS of the anteromedial subthalamic nucleus deep brain stimulation (DBS; A–C, first surgery) and bilateral ventral capsule/ventral striatum DBS (D–F, second surgery). (A, D) Axial preoperative magnetic resonance images and (B, E) their enlargements. The location of the active contacts in the preoperative images was computed by rigidly registering the postoperative images and their coordinates of the active contacts to the preoperative images with FSL’s Linear Image Registration Tool algorithm. (C, F) Postoperative coronal magnetic resonance images showing the electrodes and contacts.

The underlying mechanisms and pathophysiology of DBS-induced motor side effects are not well understood. Several disease-related risk factors have been identified for the emergence of such symptoms following STN-DBS in PD, including severe dyskinesias preoperatively and young onset PD. Moreover, dyskinetic movements as side effects of STN-DBS in OCD have been reported in 2 patients in the French Stimulation dans le Trouble Obsessionnel Compulsif Study Group in the first month following stimulation. However, these movements resolved spontaneously or promptly after the adjustment of the stimulation settings. To our knowledge, such severe and persistent motor side effects that interfere with DBS programming have not been described previously for anteromedial STN-DBS.

movements and (contralateral) hemiballismus have been associated with STN dysfunction and have been reported following STN-DBS in Parkinson disease (PD), in which the dorsolateral sensorimotor portion of the STN is typically stimulated. Although these side effects are usually transient in PD, they can make DBS programming difficult. Moreover, dyskinetic movements as side effects of STN-DBS in OCD have been reported in 2 patients in the French Stimulation dans le Trouble Obsessionnel Compulsif Study Group in the first month following stimulation. However, these movements resolved spontaneously or promptly after the adjustment of the stimulation settings. To our knowledge, such severe and persistent motor side effects that interfere with DBS programming have not been described previously for anteromedial STN-DBS.

Figure 1. Postoperative location of the electrodes after bilateral anteromedial subthalamic nucleus deep brain stimulation (DBS; A–C, first surgery) and bilateral ventral capsule/ventral striatum DBS (D–F, second surgery). (A, D) Axial preoperative magnetic resonance images and (B, E) their enlargements. The location of the active contacts in the preoperative images was computed by rigidly registering the postoperative images and their coordinates of the active contacts to the preoperative images with FSL’s Linear Image Registration Tool algorithm. (C, F) Postoperative coronal magnetic resonance images showing the electrodes and contacts.

The underlying mechanisms and pathophysiology of DBS-induced motor side effects are not well understood. Several disease-related risk factors have been identified for the emergence of such symptoms following STN-DBS in PD, including severe dyskinesias preoperatively and young onset PD. Moreover, dyskinetic movements as side effects of STN-DBS in OCD have been reported in 2 patients in the French Stimulation dans le Trouble Obsessionnel Compulsif Study Group in the first month following stimulation. However, these movements resolved spontaneously or promptly after the adjustment of the stimulation settings. To our knowledge, such severe and persistent motor side effects that interfere with DBS programming have not been described previously for anteromedial STN-DBS.
Moreover, dyskinesias following STN-DBS in PD have been associated with contact location within the dorsolateral portion of the STN. The idea that choreiform or ballistic movements result from stimulation or lesions of specific subdivisions of the STN is supported by a study in which a gamma-aminobutyric acid receptor agonist was injected into the sensorimotor, associative, and limbic territories of the STN of green monkeys. Other than behavioral changes, no abnormal movements were observed after microinjection in the anteromedial portion of the STN, whereas injection into the dorsolateral and middle portions of the STN resulted in contralateral violent and rhythmic involuntary movements and leg ballismus, respectively.

Despite postoperative imaging showing adequate placement of the electrodes, there are individual differences regarding volume and position of the STN. In addition, a human clinical study using diffusion-weighted tractography indicated a considerable degree of variation across individuals regarding the volume of structural subdivisions of the STN along the limbic, cognitive, and motor domains. In light of the individual differences in structural and functional anatomy of STN subdivisions, it is possible that in the case of the patient discussed, although the anteromedial portion of the STN was targeted, this part did in fact not constitute the nonmotor portion of the STN. Consequently, this may have led to the development of motor side effects, either directly by stimulation of the motor portion of the STN or indirectly by current spreading of contact points in close proximity to the motor portion of the STN. Importantly, while the concept of distinct functional subdivisions within the STN is popular in neuroanatomy research, it is still a matter of debate. In addition, others have suggested convergence or large overlap and interactions between these functional subdivisions.

Future attempts to manage OCD with STN-DBS should focus in an individualized, patient-specific selection method that can determine the size and location of functional and structural subdivisions of the STN that can be achieved with, for example, preoperative diffusion-weighted imaging and tractography and functional MRI.

CONCLUSION
We have presented a case of persistent bilateral motor side effects in the lower extremities that limited programming possibilities in a patient who had undergone bilateral anteromedial STN-DBS for severe refractory OCD. Reimplantation of electrodes targeting the VC/VS with the deepest electrode contact point in the area of the NAc successfully overcome this limitation and resulted in adequate therapeutic response. Reimplantation to an alternative target should be considered if stimulation-associated side effects interfere with adequate programming of the DBS system, and this cannot be resolved by adjusting stimulation parameters.

ACKNOWLEDGMENTS
We are grateful to Dr. Birgit Plantinga with helping us with the MRI-related figure.

REFERENCES

Written informed consent was obtained from the patient for publication of this case report and any accompanying images.

Conflict of interest statement: The authors declare that the article content was composed in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received 9 February 2017; accepted 11 May 2017

Journal homepage: www.WORLDNEUROSURGERY.org

Available online: www.sciencedirect.com

1878-8750/$ - see front matter © 2017 Elsevier Inc. All rights reserved.