Deep brain stimulation lead removal in Tourette syndrome

Citation for published version (APA):

Document status and date:
Published: 01/08/2020

DOI:
10.1016/j.parkreldis.2020.06.025

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 16 Jun. 2024
Deep brain stimulation lead removal in Tourette syndrome

Wissam Deeba,∗, Albert F.G. Leentjensb, Alon Y. Mogilner, Domenico Servello, Fangang Meng, Jianguo Zhang, Tommaso Francesco Galbiati, Michael S. Okun

aNorman Fixel Institute for Neurological Disease, Department of Neurology, University of Florida, Gainesville, FL, USA
bDepartment of Psychiatry, Maastricht University Medical Center, Maastricht, the Netherlands
cNYU Langone Health, New York University School of Medicine, New York, NY, USA
dTourette Clinic and Functional Neurosurgical Department, IRCCS Galeazzi Hospital, Milano, Italy
eBeijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

ARTICLE INFO

Keywords:
Deep brain stimulation
Tourette syndrome
Complications

ABSTRACT

Introduction: Tourette syndrome (TS) is a complex neuropsychiatric disorder. A small percentage of individuals with TS can experience persistent severe, refractory, and impairing tics. Deep brain stimulation (DBS) has been increasingly used for symptom management, especially in these settings. In this article, we aim to evaluate the rate and the reasons for removal of DBS hardware in TS patients.

Methods: Data was analyzed from patients enrolled in the Tourette Association of America's International Tourette Syndrome Registry and Database.

Results: Fifteen of 269 (5.6%) patients required removal of their DBS systems. The mean age at explantation was 33.8 years. In these cases we observed a rate of 1.9 explantations per year of follow up from implantation. None of the removals took place in the immediate post-operative period. Infection was the most common cause (46.7%). Only one patient received explantation for tic resolution. There were no significant associations between explantation and the presence of specific psychiatric comorbidities, including OCD, depression, anxiety, or ADHD.

Discussion: The rate of removal of 5.6% was lower than the previously reported rate in the TS DBS literature. Infections accounted for nearly half of the TS DBS explantations in this cohort. There was no relationship to psychiatric comorbidities.

1. Introduction

Tourette syndrome (TS) is a complex neuropsychiatric disorder characterized by the presence of multiple motor and vocal tics. These tics, when disabling, are frequently managed with a combination of behavioral and pharmacological approaches. It is estimated that approximately 5% of all individuals with TS are refractory to current therapies. In these cases, the tics can persist and manifest in disabling and severe tic symptoms [1]. Expert consensus defines refractory cases as those with severe disabling tics with documentation on clinical scales, those who have failed at least three classes of pharmacologic agents, and those whose psychiatric symptoms are at least stable for six months [2,3]. For these patients, deep brain stimulation (DBS) has been utilized as an experimental treatment. Multiple brain targets have been employed, including thalamic regions such as the centromedian parasfascicular nucleus region (CM-Pf), the globus pallidus internus (both anteromedial amGPi and posteroverentral pvGPi), and the anterior limb of the internal capsule inclusive of the nucleus accumbens (ALIC-NA). The literature has collectively revealed a positive outcome from TS DBS with an average reduction of motor and vocal tic scores in the 30–50% range, regardless of target [4].

There has been a concern in the literature that TS DBS may be associated with a higher incidence of hardware complications and with infections. In a recent comprehensive review, Jitkritsadakul et al. reported that hardware complications occurred in 24.8% of patients with TS as compared to 14.4% of patients with PD. The difference was more pronounced when considering hardware infections and skin erosions: 11.7% in TS versus 5.8% in PD [5]. These results have, however, been limited by small sample size (from each study site) in the dataset (largest TS DBS study with n = 39). The results were also limited by variability in study design, methodology, and duration of follow-up. The systematic review did not include some case series (as these cases did not fulfill inclusion criteria). Additionally, and importantly, there is a paucity of data on DBS explantation when utilizing a large TS cohort.

https://doi.org/10.1016/j.parkreldis.2020.06.025
Received 10 April 2020; Received in revised form 19 June 2020; Accepted 22 June 2020
Available online 25 June 2020
1353-8020/ © 2020 Elsevier Ltd. All rights reserved.
Indeed, a significant limitation for the more widespread use of DBS will be the small number of reported cases and the variability in reporting of adverse effects. To address these limitations, the Tourette Association of America (TAA) created an International Tourette Syndrome Registry and Database [6]. Our aim in this project was to report on the extent and reasons underpinning DBS explantations in TS patients through the utilization of data from a large multi-country cohort.

2. Methods

The International Tourette Syndrome Registry and Database collects clinician-submitted data from the multiple participating subspecialty centers. Individual participating sites are not compensated for participation. The University of Florida received funds as the coordinating site through the Tourette Association of America (listed in funding sources).

On 11/25/2019, the registry and database was queried for data on DBS lead explantation. Explantation was defined as a DBS lead removed from the brain regardless of the reason for removal. Information on sex, age of TS onset, age at surgery, age at explantation, reason for explantation, re-implantation information, lead type, unilateral or bilateral lead(s), target, presence or absence of common comorbidities such as obsessive-compulsive disorder (OCD), and body distribution of motor tics were all included in the analysis. The outcome of this analysis was descriptive in nature. Pearson’s Chi-Square analysis using SPSS was performed to assess if there was a difference between the presence of psychiatric comorbidity between patients who were explanted and those who were not.

3. Results

There were 269 patients enrolled in the International Tourette Syndrome Registry and Database from 31 international centers. The largest subject contribution was by Instituto Galeazzi in Italy with 21.9% of all cases. The full details of subject distribution per center are provided in Supplemental Table 1. Fifteen patients required explantation of their DBS devices (14 were bilateral) (5.6%). None of the devices were re-implanted. The mean age of TS onset in the cohort was 7.6 years ± 5.1 (range 1–20). Twelve subjects were male and three female. Only one subject in the explantation cohort had a unilateral DBS system, and one subject in the series was implanted with more than one brain target. The most common target was the CM/Pf thalamic region (n = 10) followed by the pvGPi target (n = 3), ALIC-NA (n = 1), and CM/Pf + ALIC-NA targets (n = 1) (Table 1). The target distribution for the remainder of the patients was CM/Pf thalamus (n = 130), amGPi (n = 77), pvGPi (n = 39), unspecified GPi (n = 4), ALIC-NA (n = 3), and Ce-Spv-Voi thalamus (n = 1).

3.1. Explantation

The mean age at surgery was 29.1 years ± 10.9 (range 16–48). The mean age at explantation was 33.8 years ± 10.8 (range 19–55). For a duration of 8 years, there were two explantations per year from the time of implantation to the time of explantation except for the first year with only one explantation. The average explantation per year of follow-up was 1.9. None of the explantations took place in the immediate post-operative period.

3.2. Reasons for explantation

The reasons for the explantations were variable and are summarized in Table 2. Infection was the most common cause, with a total of 7/15 cases. The sites of infection included: implantable programmable generator (IPG) pocket (n = 3), dermal erosion with lead infection (n = 2), and unspecified site (n = 2). Other reported causes for explantation included discomfort from the hardware (n = 1), poor compliance with therapy (n = 2), lack of perceived benefit (n = 1), the formation of a cyst with associated obstructive hydrocephalus (n = 1), and tic resolution (n = 1).

Table 1

Demographics and baseline data.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Age of Onset of TS</th>
<th>Age at Surgery</th>
<th>Lead</th>
<th>Target</th>
<th>Laterality</th>
<th>Age at explantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>10</td>
<td>37</td>
<td>Medtronic 3387</td>
<td>CM/Pf</td>
<td>Bilateral</td>
<td>39</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>1</td>
<td>28</td>
<td>Medtronic 3387</td>
<td>CM/Pf</td>
<td>Bilateral</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>Male</td>
<td>11</td>
<td>48</td>
<td>Medtronic 3387</td>
<td>CM/Pf</td>
<td>Unilateral (Right)</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>Male</td>
<td>9</td>
<td>19</td>
<td>Medtronic 3387</td>
<td>pvGPi</td>
<td>Bilateral</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>Female</td>
<td>20</td>
<td>21</td>
<td>Medtronic 3387</td>
<td>pvGPi</td>
<td>Bilateral</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Male</td>
<td>10</td>
<td>28</td>
<td>Medtronic 3387</td>
<td>pvGPi</td>
<td>Bilateral</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>Female</td>
<td>3</td>
<td>16</td>
<td>Medtronic 3387</td>
<td>CM/Pf</td>
<td>Bilateral</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>Male</td>
<td>8</td>
<td>17</td>
<td>Medtronic 3389</td>
<td>CM/Pf</td>
<td>Bilateral</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>Male</td>
<td>7</td>
<td>27</td>
<td>Medtronic 3389</td>
<td>CM/Pf</td>
<td>Bilateral</td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td>Male</td>
<td>4</td>
<td>36</td>
<td>Medtronic 3389</td>
<td>CM/Pf + ALIC-NA</td>
<td>Bilateral</td>
<td>44</td>
</tr>
<tr>
<td>11</td>
<td>Male</td>
<td>12</td>
<td>48</td>
<td>Medtronic 3387</td>
<td>ALIC-NA</td>
<td>Bilateral</td>
<td>55</td>
</tr>
<tr>
<td>12</td>
<td>Male</td>
<td>1</td>
<td>19</td>
<td>Medtronic 3387</td>
<td>CM/Pf</td>
<td>Bilateral</td>
<td>22</td>
</tr>
<tr>
<td>13</td>
<td>Male</td>
<td>1</td>
<td>18</td>
<td>Medtronic 3387</td>
<td>CM/Pf</td>
<td>Bilateral</td>
<td>24</td>
</tr>
<tr>
<td>14</td>
<td>Male</td>
<td>10</td>
<td>39</td>
<td>Medtronic 3387</td>
<td>CM/Pf</td>
<td>Bilateral</td>
<td>41</td>
</tr>
<tr>
<td>15</td>
<td>Male</td>
<td>7</td>
<td>35</td>
<td>Medtronic 3387</td>
<td>CM/Pf</td>
<td>Bilateral</td>
<td>41</td>
</tr>
</tbody>
</table>

The patients are clustered by reason group.

Age is reported in years. Abbreviations: CM/Pf – centromedian parafascicular nucleus of the thalamus, pvGPi – posteroverentral portion of the globus pallidus internus, ALIC-NA – anterior limb of the internal capsule and nucleus accumbens.
3.3. Tics and comorbidities

The frequency of body area involved in tics was the neck (46.7%), arms (46.7%), mouth (40%), shoulders (40%), hands (40%), trunk (40%), eyes (26.7%), feet (20%), legs (20%), pelvis (13.3%), and nose (13.3%). The distribution of motor tics did not differ between those who underwent hardware removal and those who did not (Table 3).

Despite incomplete data for some patients implanted in the registry, the Yale Global Tic Severity Scale (YGTSS) at six months, 12 months, and 24 months were reviewed and summarized (Table 4). All of the patients except patient 5 manifested improvement in the total YGTSS score.

At the time of data analysis, the information regarding comorbidities was limited due to their coding as present or absent. Validated scales, which can assess the severity and impairment of the symptoms, were available for a minority of subjects, and thus were not used in this analysis. Furthermore, a description of the symptoms associated with these comorbid disorders was not available. For instance, the nature of obsessions and compulsions in subjects with OCD was not collected. Nevertheless, the most common comorbidity associated with explantation was OCD (66.7%). The other comorbidities included depression (46.7%), anxiety (46.7%), and attention-deficit hyperactivity disorder (ADHD) (20%). The frequencies of the comorbidities in subjects drawn from the international registry who did not undergo lead explantation (n = 254) were 53.9%, 36.6%, 30.7%, and 27.6%, respectively.

There was no statistically significant difference in the frequency of OCD, depression, anxiety, or ADHD between explanted patients and those not explanted (for OCD, X² (1, n = 257) = 1.62, p = 0.2; for depression, X² (1, n = 254) = 1.23, p = 0.27; for anxiety, X² (1, n = 254) = 2.7, p = 0.1; and for ADHD, X² (1, n = 258) = 0.54, p = 0.46). Moreover, there were no statistically significant different odds for lead removal in the cases of specific psychiatric comorbidities – for OCD 2.11 (95% CI = 0.65–6.81), for depression 1.79 (95% CI = 0.63–5.11), for anxiety 2.36 (95% CI = 0.83–6.74), and for ADHD 0.62 (95% CI = 0.17–2.26). Similarly, when psychiatric comorbidities were pooled, there was no statistically significant difference in the frequency of having any psychiatric comorbidity when comparing explanted patients to those not explanted (X² (1, n = 269) = 2.37, p = 0.12).

4. Discussion

The rate of DBS lead explantation in patients enrolled in the International Tourette Syndrome Registry and Database (n = 269) was 5.6%, which was lower than reported in the literature. Although there was a variability in the number of subjects contributed by different centers (to the database), none of the centers contributed the majority. Indeed, 11 centers contributed ten or more subjects each (Supplemental Table 1). Servello et al. reported a rate of 22.9% for hardware removal in a cohort (n = 11/48) of TS DBS patients drawn from a single center in Italy [7]. A systematic review also reported an increased risk of DBS surgical complications leading to hardware removal (explantation) in more recent DBS indications inclusive of TS [5]. The reason for the difference in hardware explantation between this report and Servello

Table 3

Distribution of tics in different body parts as reported in the total study sample (n = 269), those who received lead explantation, and those who did not. Pearson Chi-Square test was done to compare the distribution of tics in different parts between those with explanted leads and those who did not have leads explanted.

<table>
<thead>
<tr>
<th>Body Part</th>
<th>Total Subjects</th>
<th>Subjects with explanted leads</th>
<th>Subjects without explanted leads</th>
<th>Pearson Chi-Square</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyes</td>
<td>37.9%</td>
<td>33.3%</td>
<td>38.2%</td>
<td>0.142</td>
<td>0.706</td>
</tr>
<tr>
<td>Nose</td>
<td>24.2%</td>
<td>20.0%</td>
<td>24.4%</td>
<td>0.150</td>
<td>0.696</td>
</tr>
<tr>
<td>Mouth</td>
<td>32.3%</td>
<td>40.0%</td>
<td>31.9%</td>
<td>0.426</td>
<td>0.514</td>
</tr>
<tr>
<td>Neck</td>
<td>39.0%</td>
<td>40.0%</td>
<td>39.0%</td>
<td>0.006</td>
<td>0.937</td>
</tr>
<tr>
<td>Shoulders</td>
<td>39.8%</td>
<td>46.7%</td>
<td>39.4%</td>
<td>0.315</td>
<td>0.575</td>
</tr>
<tr>
<td>Arms</td>
<td>36.8%</td>
<td>46.7%</td>
<td>36.2%</td>
<td>0.665</td>
<td>0.415</td>
</tr>
<tr>
<td>Hands</td>
<td>32.3%</td>
<td>40.0%</td>
<td>31.9%</td>
<td>0.426</td>
<td>0.514</td>
</tr>
<tr>
<td>Trunk</td>
<td>26.8%</td>
<td>40.0%</td>
<td>26.0%</td>
<td>1.419</td>
<td>0.233</td>
</tr>
<tr>
<td>Pelvis</td>
<td>15.6%</td>
<td>13.3%</td>
<td>15.7%</td>
<td>0.063</td>
<td>0.802</td>
</tr>
<tr>
<td>Legs</td>
<td>26.0%</td>
<td>26.7%</td>
<td>26.0%</td>
<td>0.003</td>
<td>0.953</td>
</tr>
<tr>
<td>Feet</td>
<td>16.4%</td>
<td>20.0%</td>
<td>16.1%</td>
<td>0.154</td>
<td>0.695</td>
</tr>
</tbody>
</table>

Table 4

Change in the Yale Global Tic Severity Scale (YGTSS) scores.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Motor subscore change at 6 months</th>
<th>Phonic subscore change at 6 months</th>
<th>Total score change at 6 months</th>
<th>Motor subscore change at 12 months</th>
<th>Phonic subscore change at 12 months</th>
<th>Total score change at 12 months</th>
<th>Motor subscore change at 24 months</th>
<th>Phonic subscore change at 24 months</th>
<th>Total score change at 24 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-69</td>
<td>-6</td>
<td>-53</td>
<td>-6</td>
<td>-11</td>
<td>-17</td>
<td>-11</td>
<td>-11</td>
<td>-32</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>-4</td>
<td>-6</td>
<td>-11</td>
<td>-17</td>
<td>-11</td>
<td>-11</td>
<td>-32</td>
</tr>
<tr>
<td>3</td>
<td>-39</td>
<td>-3</td>
<td>-34</td>
<td>-6</td>
<td>-11</td>
<td>-17</td>
<td>-11</td>
<td>-11</td>
<td>-32</td>
</tr>
<tr>
<td>4</td>
<td>-34</td>
<td>-3</td>
<td>-34</td>
<td>-6</td>
<td>-11</td>
<td>-17</td>
<td>-11</td>
<td>-11</td>
<td>-32</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>-3</td>
<td>-3</td>
<td>-6</td>
<td>-6</td>
<td>-11</td>
<td>-17</td>
<td>-11</td>
<td>-11</td>
<td>-32</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-6</td>
<td>-11</td>
<td>-17</td>
<td>-11</td>
<td>-11</td>
<td>-32</td>
</tr>
<tr>
<td>8</td>
<td>-4</td>
<td>-6</td>
<td>-4</td>
<td>-6</td>
<td>-11</td>
<td>-17</td>
<td>-11</td>
<td>-11</td>
<td>-32</td>
</tr>
<tr>
<td>9</td>
<td>-6</td>
<td>-10</td>
<td>-6</td>
<td>-10</td>
<td>-16</td>
<td>-22</td>
<td>-11</td>
<td>-11</td>
<td>-32</td>
</tr>
<tr>
<td>10</td>
<td>-30</td>
<td>-10</td>
<td>-30</td>
<td>-16</td>
<td>-22</td>
<td>-11</td>
<td>-11</td>
<td>-11</td>
<td>-32</td>
</tr>
<tr>
<td>11</td>
<td>-39</td>
<td>-3</td>
<td>-39</td>
<td>-16</td>
<td>-22</td>
<td>-11</td>
<td>-11</td>
<td>-11</td>
<td>-32</td>
</tr>
<tr>
<td>12</td>
<td>-29</td>
<td>-5</td>
<td>-29</td>
<td>-5</td>
<td>-22</td>
<td>-11</td>
<td>-11</td>
<td>-11</td>
<td>-32</td>
</tr>
<tr>
<td>13</td>
<td>-16</td>
<td>-3</td>
<td>-16</td>
<td>-3</td>
<td>-22</td>
<td>-11</td>
<td>-11</td>
<td>-11</td>
<td>-32</td>
</tr>
<tr>
<td>14</td>
<td>-10</td>
<td>-5</td>
<td>-10</td>
<td>-5</td>
<td>-22</td>
<td>-11</td>
<td>-11</td>
<td>-11</td>
<td>-32</td>
</tr>
<tr>
<td>15</td>
<td>-12</td>
<td>-10</td>
<td>-12</td>
<td>-10</td>
<td>-22</td>
<td>-11</td>
<td>-11</td>
<td>-11</td>
<td>-32</td>
</tr>
</tbody>
</table>
et al. is not clear. Servello et al. report a possible role for poor compliance of patient and caregivers, which might have improved with better education. The role of education and its impact on DBS outcomes and expectations, as well as the issue of anticipation and management of emerging concerns, have been possibly associated with improved outcomes [8]. A more systematic evaluation for potential educational interventions is needed.

In the TAA database, infections accounted for nearly half of the explantations. These infections occurred either at the level of the IPG pocket or involved dermal erosion. There are several potential reasons for an increased rate of infection in TS DBS. Picking, poking, scratching, and touching behaviors have been reported as more common in TS patients, especially those with OCD symptoms [9]. OCD was the most commonly reported TS comorbidity in the International Tourette Syndrome Registry and Database. The rates of these behaviors in our cohort were consistent with the general population of TS patients [10,11]. In addition to direct picking behaviors, an alteration in the immune response in TS has been proposed, but has not been proven [12,13].

Following the resolution of the infection, it is not clear why the explanted patients were not reimplanted, as this information was not systematically collected. Notable was patient 3 who developed recurrent infections of the DBS system leading to a final decision of explantation without reimplantation.

Three patient developed discomfort from the DBS hardware requiring explantation, and this accounted for 1.1% of the total patient population in the cohort, which was the same rate reported in other indications such as Parkinson’s disease and hyperkinetic disorders [14]. Furthermore, of a total of 48 patients who received surgery at the age of 18 years or younger, only three patients were explanted (6.3%). One was explanted for tic resolution, another for IPG pocket infection, and the third for the formation of a cyst at the tip of the lead. The patient who developed tic resolution was implanted at the age of 17 years and explanted at the age of 25 years. A meta-analysis reported on the use of DBS in 58 children and adolescents with TS and identified six cases of hardware explantation (10.3%) [15]. Three patients reported the resolution of tic symptoms, which was higher than our observed rate.

Another reason for explantation of DBS hardware has been a lack of perceived benefit, and this was the case for one patient in the registry. Contrary to expectations, he had a clear improvement in the total YGTSS score at 6 months, 12 months, or 24 months (Table 4). A retrospective study assessed 13 patients with TS who received DBS at the Beijing Tiantan Hospital. Three patients had their hardware removed, between four to five years post-implantation, due to a lack of perceived benefit despite having a notable decrease in their total YGTSS scores (54.2%, 60%, and 83.6%) [16]. The authors proposed several potential explanations, including Chinese cultural expectations and the psychosocial difficulties relating to altered post-DBS self-perception [17]. Future studies are needed to evaluate post-DBS self-perception [18]. This dissociation between tic improvement and perceived benefit highlights the importance of evaluating drivers of impairment in TS. Tics, despite their frequency and severity, might not be the drivers of disability, rather psychiatric comorbidities, social difficulties, or academic limitations may all be important considerations. This point emphasizes the importance of the published consensus guidelines which focus on the significance of a thorough multidisciplinary approach for evaluating patients with TS for possible DBS [3].

This study had both advantages and limitations. An advantage was the large cohort with patients drawn from a range of countries. The sample was thus more representative and the analysis less sensitive for the bias of single clinic studies (since the registry was not dependent on the authors publishing their findings). Furthermore, systematic reviews and meta-analyses may have biased in favor of studies where complications were highlighted and used as key words [5]. At the same time, the underreporting of cases in the registry and database is possible as, despite following specific templates and scales, it is voluntary and can sometimes be delayed. Participating centers might not report all their cases, such as those lost to follow-up or with incomplete data sets. Patient selection, evaluation schedule, symptom/disorder scales used, and the report of complications can vary in detail in registries and databases. The registry and database has employed mechanisms to attempt to decrease these biases as much as possible [6]. The registry and database does not have statistical data on whether the participating centers have submitted data on all their subjects with TS who received DBS and whether some subjects refused to be included. Moreover, a limitation was that the small number of explantations in our total cohort reduced the power to identify and to clarify potential risk factors. Further, the information available regarding psychiatric comorbidities was not detailed and was categorical (e.g. presence versus the absence of the condition). Finally, detailed information on the rationale for explantation, and the decision for not reimplanting was not available.

In summary, the International Tourette Syndrome Registry and Database cohort revealed a low rate of explantation in TS (5.6%). Almost half of the cases of explantation were associated with infection, and only one case was associated with tic resolution. There were no associations of the risk of explantation with the presence of specific psychiatric comorbidities. The presence or absence of specific psychiatric comorbidities might not have altered the risk of explantation, though this was not based on the severity of scales. Further work on elucidating the role of these comorbidities in TS DBS explantation is needed. The presence of psychiatric symptoms should not be considered as a contraindication for DBS, however properly addressing and considering psychiatric comorbidities should be included in an integrated DBS multidisciplinary risk-benefit evaluation.

Financial disclosure

WD and MSO received grant support from the Tourette Association of America.

AFGL, AYM, DS, FM, JZ, and TFG report no direct financial conflict.

Funding sources

This study has been supported by a grant from the Tourette Association of America.

Author roles

WD: conception, organization, execution, design, execution, and writing of the first draft; AFGL, AYM, DS, FM, JZ, and TFG: critical review and critique of drafts; MSO: conception, design, and review and critique.

Financial disclosure

Wissam Deeb received research funding from the American Brain Foundation and Tourette Association of America, royalties from Rose Publishing, Inc., and consultation fee from Medtronic.

Albert F.G. Leentjens received research funding from the Michael J Fox Foundation and royalties from Springer media.

Alon Y. Mogilner acts as a consultant for Medtronic, Abbott, and Alpha-Omega.

Fangang Meng reports receiving the following supports: National Natural Science Foundation of China (81971070), Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education (KZ201910025036).

Jianguo Zhang reports receiving funds from the National Natural Science Foundation of China.

Michael S. Okun serves as a consultant for the Parkinson’s Foundation, and has received research grants from NIH, Parkinson’s Foundation, the Michael J. Fox Foundation, the Parkinson Alliance, Smallwood Foundation, the Bachmann-Strauss Foundation, the Tourette Syndrome Association, and the UF Foundation. Dr. Okun’s DBS
research is supported by: R01 NR014852 and R01NS096008. Dr. Okun has received royalties for publications with Demos, Manson, Amazon, Smashwords, Books4Patients, Perseus, Robert Rose, Oxford Public Affairs and Cambridge (movement disorders books). Dr. Okun is an associate editor for New England Journal of Medicine Journal Watch Neurology. Dr. Okun has participated in CME and educational activities on movement disorders sponsored by the Academy for Healthcare Learning, PeerView, Prime, QuantiaMD, WebMD/Medscape, Medicus, MedNet, Einstein, MedNet, Henry Stewart, American Academy of Neurology, Movement Disorders Society and by Vanderbilt University. The institution and not Dr. Okun receives grants from Medtronic, Neurology, Movement Disorders Society and by Vanderbilt University. Dr. Okun has participated as a site PI and/or co-I for several NIH, foundation, and industry sponsored trials over the years but has not received honoraria. Research projects at the University of Florida receive device and drug donations.

Domenico Servello and Tommaso Francesco Galbiati report no financial interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.parkreldis.2020.06.025.

References