Implementing pharmacogenetics to personalize antiplatelet therapy after myocardial infarction

Citation for published version (APA):

Document status and date:
Published: 01/01/2021

DOI:
10.26481/dis.20211203dc

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 16 Nov. 2021
Impact section
Relevance

Cardiovascular diseases remain the leading cause of death worldwide and can significantly reduce quality of life and economic output. In the Netherlands, more than 34 thousand people are diagnosed with myocardial infarction each year. It has been well established that in these patients, antiplatelet treatment with the P2Y12 inhibitors ticagrelor, prasugrel or clopidogrel helps to prevent life threatening events like myocardial infarction, stent thrombosis and stroke. Unfortunately, this comes at the cost of increased bleeding complication rates. These occur in up to 30% (depending on the selected population) of the patients in the year after myocardial infarction and require medical attention. Therefore, it is important to reduce the amount of bleeding complications in order to improve quality of life, reduce healthcare costs and reduce overall mortality. Clopidogrel does not reach its optimal effect in approximately 30% of the population, which is mostly caused by mutations in the CYP2C19 gene that encodes the eponymous enzyme. Patients treated with clopidogrel and carrying these loss-of-function mutations experience more atherothrombotic events, while the other P2Y12 inhibitors lead to more bleeding complications. Therefore, this thesis aimed to investigate whether using CYP2C19 genetic testing to guide antiplatelet therapy could improve patient outcomes by reducing bleeding complication rates without increasing atherothrombotic event rates like myocardial infarction, stroke and death.

Target groups

The results of this thesis are of interest to clinicians who are directly involved in the treatment of patients who have had an acute myocardial infarction. Primarily, this is the case with cardiologists who are responsible for implementing the strategy in clinical practice, but also for primary care physicians and specialists like surgeons who might have to treat bleeding complications that occur during treatment with P2Y12 inhibitors. Furthermore, clopidogrel is used frequently by neurologists as well and CYP2C19 genetic testing is of increasing interest in patients with stroke, especially in patients with recurrent strokes while being treated with clopidogrel. Results of this thesis could help to start new prospective trials to investigate whether CYP2C19 genetic testing could improve outcomes in stroke patients as well. This thesis is also of interest to health insurance companies and policy makers since a genotype-guided strategy could help to reduce healthcare costs while improving patient outcomes and quality of life.

Implication and implementation

A CYP2C19 genotype-guided strategy resulted in fewer bleedings without an increase in events like myocardial infarction, stroke and death. These findings were published in the New England Journal of Medicine, which is one of the most impactful medical journals worldwide. It already has been cited in dozens of publications in the short period since its publication and has led to the genotype-guided strategy receiving a recommendation in the latest European Society of Cardiology guideline. This demonstrates the major impact of the trial and the interest for this topic of cardiologists and researchers worldwide. Many are interested in, or have already implemented the strategy in clinical practice. However, it is crucial that health insurance companies or governments reimburse the costs of the genetic test. The health economic analysis of the POPular Genetics demonstrated that a genotype-guided strategy results in improved quality of life, while reducing healthcare costs. Therefore, since in the Netherlands some hospitals have already implemented the strategy, insurance companies and governments are currently the ones saving costs, while hospitals face higher costs with buying the genetic tests. To ensure a broad implementation of the strategy in clinical practice, health insurance companies should cover these costs.