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Abstract
Quality assurance of data prior to use in automated pipelines and image analysis would assist in 
safeguarding against biases and incorrect interpretation of results. Automation of quality assurance 
steps would further improve robustness and efficiency of these methods, motivating widespread 
adoption of techniques. Previous work by our group demonstrated the ability of convolutional 
neural networks (CNN) to efficiently classify head and neck (H&N) computed-tomography (CT) 
images for the presence of dental artifacts (DA) that obscure visualization of structures and the 
accuracy of Hounsfield units. In this work we demonstrate the generalizability of our previous 
methodology by validating CNNs on six external datasets, and the potential benefits of transfer 
learning with fine-tuning on CNN performance. 2112 H&N CT images from seven institutions 
were scored as DA positive or negative. 1538 images from a single institution were used to train three 
CNNs with resampling grid sizes of 643, 1283 and 2563. The remaining six external datasets were used 
in five-fold cross-validation with a data split of 20% training/fine-tuning and 80% validation. The 
three pre-trained models were each validated using the five-folds of the six external datasets. The 
pre-trained models also underwent transfer learning with fine-tuning using the 20% training/fine-
tuning data, and validated using the corresponding validation datasets. The highest micro-averaged 
AUC for our pre-trained models across all external datasets occurred with a resampling grid of 2563 
(AUC  =  0.91  ±  0.01). Transfer learning with fine-tuning improved generalizability when utilizing 
a resampling grid of 2563 to a micro-averaged AUC of 0.92  ±  0.01. Despite these promising results, 
transfer learning did not improve AUC when utilizing small resampling grids or small datasets. Our 
work demonstrates the potential of our previously developed automated quality assurance methods 
to generalize to external datasets. Additionally, we showed that transfer learning with fine-tuning 
using small portions of external datasets can be used to fine-tune models for improved performance 
when large variations in images are present.
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Introduction

Increased computing power has provided opportunities for integration of automation into all aspects of cancer 
care. Methods are being researched and developed within radiation oncology to automate routine cognitive 
processes, thereby freeing up valuable time for more complex tasks; namely, methods for automated segmentation 
(Clark et al 1998, Davis et al 2005, Dou et al 2017) and machine-based treatment planning (Purdie et al 2011, 
Hansen et al 2016, McIntosh et al 2017) are of great interest and have had success in clinical integration (McIntosh 
et al 2017, Bodensteiner 2018). Additionally, automated information generation, whereby automated pipelines are 
utilized to extract and generate new information not immediately human minable from data (e.g. radiomics), are 
also undergoing a surge of interest for detection and prognostic modeling (Esteva et al 2017, Welch et al 2019a). 
However, despite the promise of automation, it is challenged by the nuances of medical data; including variations 
in data quality that can lead to unforeseen biases in results (Welch et al 2019a). Therefore, data curation with 
respect to its quality would represent a fundamental step towards reliable and reproducible results.

Dental artifacts (DA) in head and neck (H&N) computed tomography (CT) images have been identified as 
a challenge for automating routine cognitive processes and information generation (Block et al 2017, Ger et al 
2018, Welch et al 2019b). Like many other artifacts, they have the potential to introduce a-priori biases that affect 
the results of automated image analysis tools. DAs result in poor structure visualization and Hounsfield unit 
calculation, which can affect contouring (Hansen et al 2017), treatment planning (Mail et al 2013), and quantifi-
cation of images (Leijenaar et al 2016, Block et al 2017). By identifying CT images impacted by these artifacts we 
can safeguard automated methods against certain biases. However, proper curation for these types of artifacts 
is a labour intensive task usually involving manual classification of DA positive (DA+) and DA negative (DA−) 
images; a seemingly simple tasks for the dataset sizes currently being utilized, but a laborious task for large retro-
spective datasets that will become available in the future as the big data paradigm integrates into clinics.

We have previously studied a method for automated classification of DA status in H&N CT images using 
convolutional neural networks (CNN) (Welch et al 2019a). Using a dataset of 1538 images we achieved a preci-
sion recall area under the curve of 0.92  ±  0.03. Furthermore, we explored the impact of various resampling grid 
sizes and CNN depths, discovering that more computationally efficient CNNs could be utilized for increased 
speed with insignificant loss of classification performance. These results were obtained using data from a single 
institution, and therefore provided evidence about the performance of our CNN on a dataset with consistent 
imaging practises. However, validation comes in many forms and internal validation can lead to overfitting and 
suboptimal performance with unstable results depending on the size of the training dataset (Feinstein 1996). 
External validation is another test of validity and is designed to test generalizability of a model to a different, but 
related, source of data. It is also the most convincing test of validity that proves a modeling method has not simply 
memorized irrelevant noise associated with the training images.

In addition, CNNs provide an opportunity to ‘fine-tune’ models for better performance on external datasets. 
Transfer learning is the process of tuning a previously trained CNN’s learned features to a new dataset using a 
smaller number of training images (Pan and Yang 2010, Kelly et al 2016). It assumes that a pre-trained network 
contains information about generic features that can be generalized to a new dataset, and does not require related 
categories to be present. For example, a dataset containing over 15 million images with crowd-sourced anno-
tations from 22 000 categories, including 120 dog breeds (Krizhevsky et al 2017) has trained models used for 
transfer learning with medical data. Despite the seeming irrelevance of the training images from these datasets 
to medical data, models have successfully been utilized to classify cellular morphological changes from high-
content microscopy images (Kensert et al 2019), and skin cancer lesions at a similar accuracy to dermatologists 
(Esteva et al 2017). Usage of these models and training datasets are often limited to 2D RGB images compatible 
with the initial training set, which can be challenging for medical images since many of them are three-dimen-
sional (3D) grey-scale images. This warrants the development of a pre-trained model compatible with 3D medi-
cal data that can be fine-tuned for improved generalizability performance.

Automated processes for quality assurance of medical images would increase objectivity and efficiency of 
these important tasks, thereby reducing potential biases in conclusions and results. In this work we focus on the 
classification of DA+  /DA−  H&N CT images, where we aim to determine the generalizability of pre-trained 
CNNs on external datasets, and the impact of resampling grid sizes on classification performance. Additionally, 
the feasibility and performance of transfer learning with fine-tuning with a variety of external datasets contain-
ing different event distributions, imaging practices and dataset sizes is explored.

Methods

Datasets and dental artifact classification
Seven H&N CT datasets were used in this work. A single dataset comprised of 1538 H&N CTs from the Princess 
Margaret Cancer Centre was used for training of the initial model, hence forth referred to as the ‘pre-trained 
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model’. Six external datasets from different institutions, totaling 574 CTs, were used for external validation and 
fine-tuning transfer learning with the pre-trained model: (1) H&N1 with 156 planning CTs (Aerts et al 2014); (2) 
H&N2 with planning CTs for 129 patients (Aerts et al 2014); (3) HGJ with planning CTs for 90 patients; (4) HMR 
with planning CTs for 41 patients; (5) CHUM with planning or diagnostic CT for 59 patients; (6) CHUS with CT 
images from diagnostic PET/CTs for 98 patients. Datasets HGJ, HMR, CHUM and CHUS are from a publically 
available Cancer Imaging Archive (TCIA) dataset (Vallières et al 2017). Image details are found in table 1. All 
images were collected using 16 bit allocation, preventing truncated HU values caused by 12 bits. Additionally, to 

the authors’ knowledge, MAR methods were not utilized during imaging.
We converted all DICOM CT image volumes to nearly raw raster data (nrrd) formats automatically using 

Python and the SimpleITK library (Yaniv et al 2018); however, any imaging format compatible with SimpleITK 
imaging loading is appropriate. A single observer with eight years of medical imaging experience scored the DA 
status of each patient’s converted nrrd CT volume. DA status options were DA positive if a dental artifact existed 
(DA+, status  =  1) or DA negative if a dental artifact did not exist (DA−, status  =  0). As in our previous publica-
tion (Welch et al 2019a), magnitude of the DA artifact was not considered. A patient was considered DA+  if DA 
streaking existed on any slice of the image volume (figure 1).

Data preprocessing
All CT volumes were processed prior to utilization using a multistep procedure. Details for each of the steps are 
outlined in Welch et al (2019a), and include: (1) interpolation of voxels to 1 mm3 using the SimpleITK linear 
resampling image filter; (2) data augmentation using random cropping of 10% and left-right flipping of 60% 
of the training or fine-tuning data; (3) padding of CT volumes to a uniform size to maintain the aspect ratio of 
the volume during resizing; (4) resizing of CT image volumes to determine the impact of various resampling 
grids on CNN generalizability and transfer learning with fine-tuning performance. For our work, resampling 
grids sizes of 2563, 1283 and 643 voxels were analyzed for performance. Examples of image slices at the different 
resampling grids can be found in figure 2. Smaller resampling grids result in images with less detail, while larger 
resampling grids retain more of the detail found in the original image.

Training of pre-trained model
We used the open-source python library, PyTorch (Shaikh 2018) for this study, and a VMware, Inc. virtual 
machine with 10 Intel Xeon CPU E5-2690 processors and a NVIDIA Tesla K40m GPU. Batches of seven images, 
randomly selected from our training dataset, were fed into our CNN. Batch normalization and rectified linear 
unit functioning (ReLU) were present on all convolutional layers and max pooling was used on all convolutional 
layers except the final one (figure 3) (Nielsen 2015, LeCun et al 2015); average pooling was used on the outputs of 
the final convolutional layer, followed by a fully connected layer and softmax classification. Convolutional kernels 
with a size of 5 and padding of 2 were used on the first convolutional layer, all subsequent layers used a kernel size 

of 3 with a padding of 1. Uneven class distributions were accounted for by using weighted optimization.
Three CNNs were pre-trained based on our previous results (Welch et al 2019b). CNN depths of 3, 4, and 5 

were chosen for resampling grid sizes of 643, 1283 and 2563, respectively. Details of input and output sizes used 
for the different depths and resampling grids are found in table 2. Training was performed for 20 epochs based on 
author knowledge regarding model convergence from unpublished studies.

Transfer learning with fine-tuning
For each of the six external datasets, the impact of transfer learning with fine-tuning on DA classification was 
tested using five-fold cross validation. Each of the datasets was divided into five-folds where k  −  1 folds (80% of 
the data) were used for validation and the kth fold (the remaining 20% of the data) was used for transfer learning 
with fine-tuning. This split size was selected to simulate an external sites potential usage of the pre-trained CNN; 
it is assumed that the external users would classify a smaller portion of their data for training with no knowledge 
of the DA status distribution, see supplementary material figures  1 and 2 (stacks.iop.org/PMB/65/035017/
mmedia) for the distributions of DA+  and DA−  in each subsampled dataset.

All five transfer learning folds from each of the six external datasets were used to fine-tune the three pre-
trained models (with resampling grids of 643, 1283 and 2563). Fine-tuning occurred for 20 epochs on all CNN 
and fully-connected layers. The weights of the optimizer were updated to reflect the distribution of DA+  and 
DA−  patients found in the dataset fold.

External validation of pre-trained and transfer learned models
All five validation subsets (k  −  1 folds, 80% of dataset images) from the six external datasets were used to validate 
the three pre-trained models and their corresponding fine-tuned models. Each image volume from the validation 
subsets was fed through a CNN to obtain the model’s soft-max DA status classification. A model’s performance 
was evaluated every five epochs on both fine-tuning and validation datasets.

Phys. Med. Biol. 65 (2020) 035017 (11pp)
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Table 1.  Dataset details outlining the location, public/private status, image type, median number of slices, thickness, resolution, tube voltage peak, scanner manufacturer and bits for the seven datasets.

PM H&N2 MAASTRO HGJ HMR CHUM CHUS

Location Princess Margaret  

Cancer Centre,  

Toronto, Canada

VUmc Cancer 

Clinic, Amsterdam 

Netherlands

MAASTRO  

Clinic, Maastricht, 

Netherlands

Hôpital Général Juif,  

Montréal, Canada

Hôpital Maisonneuve-

Rosemont, Montréal, 

Canada

Centre Hospitalier de l’Université 

de Montréal, Montréal, Canada

Centre Hospitalier Universitaire de 

Sherbrooke, Sherbrooke, Canada

Public/private Private Private Public (XNAT) Public (TCIA) Public (TCIA) Public (TCIA) Public (TCIA)

Image type Planning CT Planning CT Planning CT Planning CT Planning CT Planning and Diagnostic CT Planning CT

Num. patients 1538 129 156 91 41 59 98

Median slice thickness 

and range (mm)

2 (1–4) 2.5 (2.5–5) 3 (1.5–3) 2.5 (2.5–3) 3 (1.5–3) 1.5 (1.5–3.27) 3 (2–3)

Median slice num. and 

range

182 (130–330) 110 (52–173) 134 (103–307) 156 (90–222) 127 (111–266) 237 (90–348) 141 (109–236)

Median pixel size and 

range (mm)

0.98 (0.61–2.00) 0.78 (0.56–0.98) 0.98 (0.98–1.10) 1.06 (0.88–1.27) 1.12 (0.61–1.26) 0.98 (0.98–1.17) 1.17 (0.68–1.17)

Bits 16 16 16 16 16 16 16

Manu. GE medical 58 37 0 91 35 18 0

Philips 257 0 1 0 6 41 98

Toshiba 1223 0 0 0 0 0 0

Siemens 0 7 99 0 0 0 0

CMS, Inc. 0 0 56 0 0 0 0

Unknown 0 21 0 0 0 0 0

Tube 

voltage 

peak 

(kVp)

120 1538 7 156 91 10 59 0

140 0 36 0 0 31 0 98

Unknown 0 22 0 0 0 0 0

P
hys. M

ed
. B

iol. 65 (2020) 035017 (11p
p)
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Figure 1.  Example axial slices from three PM patient imaging volumes. This figure is a reproduction of a figure found in Welch et al 
(2019a) (a) shows a large magnitude DA, (b) shows a small magnitude DA, and (c) shows an image with no DA.

Figure 2.  Example of image slices at various resampling grids of interest. Dental artifact is indicated by red arrows.

Figure 3.  Example schematic of the DA status CNN. For simplicity, the training is shown here with a 2D image. Batches of 14 images 
were input into the network. The output of the convolutional layers underwent BatchNormalization, rectified linear unit (ReLU) 
and pooling. The final layer of the CNN only underwent BatchNormalization, ReLU and average pooling. A single fully connected 
layer was followed by a softmax classification which returned probabilities that a given image was DA+  or DA−  . The ellipses (…) 
indicates the additional convolutional layers that are added as a function of the image resolution. Filter dimensions are found in 
table 2.

Table 2.  Details of the number of convolutional layers, sizes of convolutional layers input and outputs, and size of the fully connected layer 
are given in this table relative to the resampling grids used. All depths resulted in a fully connected layer feature size of 83.

Conv_1 Conv_2 Conv_3 Conv_4 Conv_5
Fully connected 

layer feature sizeInput Output Input Output Input Output Input Output Input Output

Resampling  

Grid
256 Depth 5 1 4 4 8 8 16 16 32 32 64 8  ×  8  ×  8

128 4 1 4 4 8 8 16 16 32 N/A N/A 8  ×  8  ×  8

64 3 1 4 4 8 8 16 N/A N/A N/A N/A 8  ×  8  ×  8

Phys. Med. Biol. 65 (2020) 035017 (11pp)
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Since we were working under the assumption during fine tuning that the distribution of DA statuses was 
unknown we used the area under the receiver operating characteristic curve (AUC) to evaluate performance of 
a CNN instead of the precision recall curve. The calculated AUC could then be used as a representative value of 
the true positive rate versus the false positive rate. The AUC was calculated using Python’s Sci-kit learn library 
(Pedregosa et al 2012), and the average and standard deviation (STDev) across the five iterations of testing sets is 
also reported.

Results

The prevalence of DA+  and DA−  images in each dataset, as scored by a single observer with 8 years of medical 

imaging experience, are found in table 3 below.
The pre-trained models had micro-averaged AUCs of 0.88  ±  0.01, 0.89  ±  0.02, and 0.91  ±  0.01 for resam-

pling grid sizes of 643, 1283 and 2563, respectively, across all external datasets and data splits. After 20 epochs, the 
transfer learning with fine-tuning models trained for 643, 1283 and 2563 resampling grid sizes had micro-average 
AUCs of 0.89  ±  0.01, 0.90  ±  0.01, and 0.92  ±  0.01, respectively, across all external dataset and data splits. Aver-
age AUCs and STDev for each of the individual external datasets over the five-folds using the pre-trained and 

fine-tuned models after 20 epochs are found in table 4.
Average AUCs and STDevs for each dataset validated on the pre-trained models, and fine-tuned models with 

resampling grids of 643, 1283 and 2563 after 5, 10, 15 and 20 epochs are found in figure 4. AUCs for each of the five 
external data splits are in supplementary material tables 1–3.

Discussion

The volume, variety, velocity and veracity of measurement data in cancer care is expanding to capture and 
integrate a diverse set of disease and host factors. Automated pipelines and processes are being developed to 
explore this data, but their future success depends on an understanding of the nuances of medical data and its 
quality. For this reason, efficient methods designed to safeguard big data methodology against potential data 
biases, while allowing users to have control over the eventual usage of the data, becomes vitally important. In 
this work we externally validated pre-trained CNNs designed to classify DA status in H&N CTs on six external 
datasets, exploring the impact of resampling grid sizes and transfer learning with fine-tuning on classification 
performance. Generalizability increased with resampling grid sizes when using the pre-trained models, 
with the highest micro-averaged AUC across all external datasets occurring with a resampling grid of 2563 
(AUC  =  0.91  ±  0.01); transfer learning with fine-tuning further improved generalizability when utilizing a 
resampling grid of 2563, to a micro-averaged AUC of 0.92  ±  0.01. Our results demonstrate not only the potential 
to automate data quality checks, but also the benefits and pitfalls of fine-tuning models for usage with datasets 
external to training data.

This work builds upon our previous publication (Welch et al 2019b) and aims to determine whether prior 
acquired knowledge from pre-trained CNNs could be leveraged for usage in new unique datasets. External valida-
tion demonstrates performance of a model in a different patient population and puts in perspective preliminary 
single site studies being performed across the literature, while acknowledging how those results might change for 
other centers (Altman and Royston 2000, Liu et al 2019). Our selected external datasets utilized data from dif-
ferent institutions that contained variations in CT acquisition (e.g. slice number and thickness, pixel size, peak 
tube voltage, scanner manufacturer, etc) and other potential nuanced differences. Despite the pre-processing of 
our images to make them uniform in voxel size and compatible with usage in the CNNs, these variations can still 

Table 3.  Distributions of DA+  and DA−  images in each dataset.

Positive dental artifact (DA+) Negative dental artifact (DA−)

Pre-trained model training data

PM 1092 (71%) 446 (29%)

External data: transfer learning/fine-tuning and validation

H&N2 70 (54%) 59 (46%)

MAASTRO 73 (47%) 83 (53%)

HGJ 56 (62%) 35 (38%)

HMR 10 (24%) 31 (76%)

CHUM 32 (54%) 27 (46%)

CHUS 44 (45%) 54 (55%)

Phys. Med. Biol. 65 (2020) 035017 (11pp)
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have an impact on image quantification (Meyer et al 2019, Traverso et al 2019), and could have similar impacts on 
the ability of the CNNs to reproduce results in external datasets. In this work, we achieved micro-averaged AUCs 
with our pre-trained CNNs on the six external datasets of 0.88  ±  0.01, 0.89  ±  0.02, and 0.91  ±  0.01, across the 
five-folds, for resampling grid sizes of 643, 1283, and 2563, respectively. Furthermore, when portions of the exter-

Table 4.  AUCs for all external datasets and resampling grid sizes. AUCs are shown for validation of the pre-trained model, as well as the 
fine-tuned models after 20 epochs of training.

Resampling grid size

643 1283 2563

CHUM Pre-transfer learning 0.90  ±  0.02 0.87  ±  0.01 0.89  ±  0.01

20 epochs 0.85  ±  0.02 0.85  ±  0.05 0.83  ±  0.05

CHUS Pre-transfer learning 0.84  ±  0.03 0.90  ±  0.02 0.92  ±  0.02

20 epochs 0.89  ±  0.02 0.92  ±  0.02 0.92  ±  0.01

HMR Pre-transfer learning 0.82  ±  0.05 0.88  ±  0.05 0.96  ±  0.02

20 epochs 0.80  ±  0.04 0.87  ±  0.05 0.93  ±  0.01

MAASTRO Pre-transfer learning 0.92  ±  0.01 0.87  ±  0.01 0.91  ±  0.01

20 epochs 0.89  ±  0.03 0.89  ±  0.02 0.91  ±  0.03

H&N2 Pre-transfer learning 0.97  ±  0.02 0.92  ±  0.02 0.98  ±  0.01

20 epochs 0.94  ±  0.01 0.93  ±  0.01 0.98  ±  0.01

HGJ Pre-transfer learning 0.90  ±  0.01 0.92  ±  0.01 0.93  ±  0.01

20 epochs 0.91  ±  0.02 0.93  ±  0.02 0.95  ±  0.03

Figure 4.  Average performance of the pre-trained and transfer learning with fine-tuning models (after 5, 10, 15 and 20 epochs of 
training) at resampling grids of 643, 1283 and 2563 for all external datasets.
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nal datasets were used to fine-tune the pre-trained models, micro-averaged AUCs increased after 20 epochs to 
0.89  ±  0.01, (p   =  2.06e−1), 0.90  ±  0.01 (p   =  1.20e−1), and 0.92  ±  0.01 (p   =  4.37e−2), for resampling grid sizes 
of 643, 1283 and 2563, respectively. The data used for fine-tuning of the models was selected to be representative 
of an external site’s usage. Specifically, we assumed that an external user would manually classify a small random 
selection (20%) of their entire dataset with no knowledge or consideration of DA event distributions. This fur-
ther shows the versatility and robustness of our method and results.

Comparison of our results to the literature show improved performance over other methods, as well as a need 
for these approaches. In Wei et al (2019) they demonstrated the importance of DA consideration in radiomics 
studies by showing that the removal of DA+  patients from analysis improved predictions. However, in their 
work they only achieved a test AUC of 0.89 when recognizing DA+  patient image volumes, which does not out-
perform our CNNs when utilizing our pre-trained model with resampling grid sizes of 2563, or transfer learning 
with fine-tuning and resampling grid sizes of 1283 and 2563. Additionally, their methodology requires definition 
of ROIs within the image and extraction of features prior to model application, a more hands-on approach when 
compared to our methods. Oh et al (2019) developed a method for classification of DA+  image slices that per-
forms with a prediction rate of 97.10% and 74.10% for DA+  and DA−  image slices, respectively. If it is desired 
by the user to retain image slices without visible artifacts in their analysis, our CNN could be used in conjunction 
with this type of method for initial flagging prior to the more computationally expensive methods presented by 
Oh et al. Granted, justification would be required to explain the implications of slice removal on shape and tex-
ture features.

Transfer learning with fine-tuning had the greatest benefit to AUC performance in the CHUS dataset when 
using a resampling grid size of 643 (figure 4(b)). Upon further investigation of the CHUS data it was discovered 
that immobilization bite blocks were used (figure 5) for this cohort, and present in 55.2%  ±  5.1% of all patients 
in the test sets. Bite blocks were not present in the pre-trained model training data, and were exclusive to the 
CHUS dataset. The increase in AUC for the CHUS data from 0.84  ±  0.03 to 0.89  ±  0.02 after transfer learning 
with fine-tuning therefore indicates that features specific to bite blocks may have been learned and resulted in 
significant performance improvements compared to our pre-trained model. To test this theory we removed the 
patients with bite blocks from the dataset and found that the performance of the pre-trained model on the new 
CHUS dataset remained unchanged at 0.88  ±  0.02 after 20 epochs of fine-tuning. These results demonstrate 
how transfer learning with large datasets containing image anomalies can be leveraged to improve model per-
formance in external data that differs from the original training data. However, it should be noted that this was 
only observed at small resampling grid sizes and that images that retained more detail (i.e. larger resampling grid 
sizes), performed equally as well in the CHUS dataset with and without fine-tuning.

Despite the promising performance of transfer learning with fine-tuning that we observed with CHUS at 
small resampling grid sizes, we found it did not contribute to significant improvements in performance with the 
other datasets at small or large resampling grids (figure 4). More importantly, transfer learning with fine-tuning 
was not effective when the overall dataset, and therefore the number of training images available, was small. This 
observation is irrespective of the resampling grid size and is best observed in our HMR (n  =  41) and CHUM 
(n  =  59) datasets. In these datasets it can be seen that the AUC decreases or remains stable after transfer learning 
with fine-tuning (figures 4(a) and (c)), and has large variations across the five-folds of transfer learning with fine-
tuning and validation. This indicates that transfer learning with fine-tuning may not be able to observe enough 
data variation to increase AUC, and thus warrant its application.

Additionally, when large variations in imaging are present in a small dataset the challenges are compounded. 
This is demonstrated in the CHUM dataset, where 16 of the 59 image volumes (27%) were diagnostic CTs instead 
of planning CTs. The difference in these images can be seen in figure 6. Transfer learning with fine-tuning in the 
CHUM dataset reduced AUCs from 0.90  ±  0.02, 0.87  ±  0.01, and 0.89  ±  0.01 by 0.05  ±  0.03, 0.02  ±  0.04, and 
0.06  ±  0.05, for resampling grid sizes of 643, 1283 and 2563, respectively. However, when the diagnostic images 
were removed from the dataset, and fine-tuning and validation were repeated, the post-transfer learning with 
fine-tuning AUCs increased by 0.004  ±  0.044 for a resampling grid sizes of 1283, and decreased by 0.004  ±  0.034 
and 0.018  ±  0.044 for a resampling grid sizes of 643 and 2563, respectively. These results indicate that fine-tuning 
with a small dataset, containing images with large differences, makes the CNN more susceptible to overfitting; 
this differs from what we saw with the CHUS dataset that, although it contained large differences in the images, 
was large enough to provide a sufficient number of examples to the CNN. Based on these results we suggest that 
for smaller datasets with large imaging variations, manual classification or classification with our pre-trained 
model are preferable to transfer learning with fine-tuning.

The performance of our CNN on the CHUS and CHUM datasets indicate an opportunity for more sophis-
ticated data augmentation to be included in future work. Data augmentation introduces variations and uncer-
tainty into the training data to generate a more robust and generalizable CNN (Mikolajczyk and Grochowski 
2018). In our work we included image cropping and flipping; however, image rotation, translation and noise 
introduction are other methods that may be explored in the future. Future work in this area could also explore 
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the impact of including synthetic data in training; an idea which has been explored for classification of motion 
artifacts in magnetic resonance imaging (Graham et al 2018). The inclusion of these data alterations may be able 
to provide enough examples during training that the challenges observed in CHUS and CHUM are mitigated.

Three main limitations exist in our work, including utilization of a single observer for ground-truth DA clas-
sification, binary classification of DAs and classification of a single type of artifact. Single observer classification 
allowed for consistent classification of DAs, since sensitivity and specificity of what is considered a DA is observer 
specific. However, inappropriate window leveling or fatigue may have resulted in misclassifications. Utilization 
of binary DA classifications further exacerbates this limitation since the streaking required for a patient to be 
considered DA+  by our observer was minimal and a second observer may disagree with the classifications. These 
discrepancies in DA status would impact both training and validation performance of our CNNs. Future work 
may be able to obtain more reliable ground truth labels, and reduce potential misclassifications due to user error, 
by using multi-observer classifications. Classification of DAs based on their magnitude may also improve results; 
however, in fields such as radiomics, even small artifacts should be considered potentially harmful since the goal 

Figure 5.  Example images from the CHUS dataset showing correct and incorrect classifications for patients with and without 
immobilization bite blocks. Images are in native resolution and have been cropped for easier visualization. A solid line represents 
patients without a bite block and a dashed line represents patients with bite blocks. Green, red blue and orange represent true 
positive, true negative, false negative and false positive predictions of DA status.

Figure 6.  Example images from the CHUM dataset. (a) An axial slice of a planning image volume, (b) an axial slice of a diagnostic 
image volume. Both planning and diagnostic image volumes were present in the CHUM dataset. The differences in the images 
(couch, patient positioning, etc) provided challenges for fine-tuning our CNN that were compounded by the overall size of the 
dataset.
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10

M L Welch et al

of the field is to quantify features not readily visible. Additionally, these models have been trained for DA classifi-
cation in H&N CT images. However, other artifacts can be present in images that also require consideration. For 
example, metal artifacts pose similar problems in pelvic CTs due to hip replacements, and chest CTs from stents 
and pacemakers. Future validation of our model may demonstrate that these types of artifacts are classifiable 
with our pre-trained model, or learnable in a similar transfer learning approach.

By verifying the ability of a pre-trained model to classify DAs in external datasets, and the ability to fine-tune 
the model when large imaging variations are present, we have demonstrated the potential use of these techniques 
as a method of open-access data curation. Often, to obtain the number of events required to generate a robust 
conclusion, researchers will utilize open-access data (Herrick et al 2012, Clark et al 2013), generating large data-
sets where manually curating each image volume for DAs becomes a cumbersome task. By flagging images that 
may be of concern to a user in a passive manner, using models such as the presented CNNs, we are able to increase 
efficiency, while still allowing the user control of whether the images should be included in their pipeline. If it 
is decided that DAs are a concern, regardless of their magnitude or location, the image volume can be removed 
from analysis using the pre-classified data (Leijenaar et al 2016), the affected slices can be removed from the 
image volume (Elhalawani et al 2018), or metal artifact reduction (MAR) techniques could be applied (Zhang 
and Yu 2018). However, caution is warranted for usage of MAR methods in radiomics studies since new artifacts 
can be generated with these methods (Block et al 2017). Areas of automated research (e.g. contouring, RT treat-
ment planning and quantification of imaging features), all rely on machine learning, putting results at risk of 
misinterpretation, and warranting the need for data quality checks. Having a method that is capable of data qual-
ity checks on large quantities of images, regardless of the data source, will be of great benefit as big data methods 
and large retrospective datasets become more common in cancer care.

Conclusion

Efficient and objective methods of medical data quality assurance are needed for effective utilization of big 
data methods in cancer care. Without appropriate consideration of the nuances and potential biases present in 
medical data we put our research at risk of false, misunderstood, or biased conclusions. Our work demonstrates 
the potential of our previously developed automated quality assurance methods to generalize to external datasets, 
and the ability of transfer learning to fine-tune our models for improved performance when large variations in 
imaging data are present. Future work will explore the generalizability of our model to metal artifacts external to 
H&N image volumes, while utilizing multi-class, multi-observer artifact classifications.
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