The impact of characteristics of cigarette smoking on urinary tract cancer risk: a meta-analysis of epidemiologic studies

Citation for published version (APA):

Document status and date:
Published: 01/01/2000

DOI:
10.1002/1097-0142(20000801)89:3<630::AID-CNCR19>3.0.CO;2-Q

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at: repository@maastrichtuniversity.nl providing details and we will investigate your claim.

Download date: 15 Jun. 2020
The Impact of Characteristics of Cigarette Smoking on Urinary Tract Cancer Risk

A Meta-Analysis of Epidemiologic Studies

Maurice P. A. Zeegers, M.Sc.1
Frans E. S. Tan, Ph.D.2
Elisabeth Dorant, Ph.D., M.D.1
Piet A. van den Brandt, Ph.D.1

1 Maastricht University, Department of Epidemiology, Maastricht, The Netherlands.
2 Maastricht University, Department of Methodology and Statistics, Maastricht, The Netherlands.

Address for reprints: Maurice P. A. Zeegers, M.Sc., Maastricht University, Department of Epidemiology, P.O. Box 616, 6200 MD Maastricht, The Netherlands.

Received November 8, 1999; revision received March 7, 2000; accepted April 3, 2000.

BACKGROUND. Although narrative reviews have concluded that there is strong support for an association between cigarette smoking and urinary tract cancer, the association has never been quantified systematically in reviews. The purpose of this systematic review was to summarize and quantify the impact of different smoking characteristics (status, amount, duration, cessation, and age at first exposure) both unadjusted and adjusted for age and gender.

METHODS. The authors included 43 epidemiologic studies (8 cohort and 35 case-control) and calculated summary odds ratios (SORs) by meta-regression analyses for different smoking characteristics. They also evaluated changes in summary estimates according to differences in study methodology.

RESULTS. Smoking status and increased amount and duration of smoking were associated with a strong increased risk of urinary tract cancer. Smoking cessation and age at first exposure were negatively associated with the risk of urinary tract cancer. The age- and gender-adjusted SORs for current and former cigarette smokers compared with those for nonsmokers were 3.33 (95% confidence interval [CI], 2.63–4.21) and 1.98 (CI, 1.72–2.29), respectively. Even though the component studies differed in methodology, the results were rather consistent.

CONCLUSIONS. The results suggest a substantial increase in risk of cancer of the urinary tract for cigarette smokers. Based on the results of this study and previous literature, the authors conclude that current cigarette smokers have an approximately threefold higher risk of urinary tract cancer than nonsmokers. In Europe, approximately half of urinary tract cancer cases among males and one-third of cases among females might be attributable to cigarette smoking. Cancer 2000;89:630–9. © 2000 American Cancer Society.

KEYWORDS: cigarette smoking, urologic neoplasms, bladder neoplasms, meta-analysis, epidemiology.

Over the last 4 decades, many epidemiologic studies have been conducted to investigate an association between cigarette smoking and the development of urinary tract cancer. Currently, a substantial amount of evidence has accumulated in support of a positive association between cigarette smoking and urinary tract cancer risk. A positive association has been consistently shown in both men and women in many different geographic areas. Similar results have been obtained in numerous case–control and follow-up studies.

Although cigarette smoking explains the occurrence of a greater amount of urinary tract cancer than does any other known environmental factor (e.g., occupation)1 and no other environmental factor has been shown to confound this association, to our knowledge no
systematic review on the association between several smoking characteristics and urinary tract cancer has been conducted.

Earlier narrative reviews on cigarette smoking and urinary tract cancer have summarized the association for current cigarette smoking compared with nonsmokers by estimating a general relative risk without calculation or systematic collection of data. According to these narrative reviews, typical cigarette smokers have two to four times the risk of nonsmokers. Most narrative reviews suggested that the risk of urinary tract cancer increases with the number of cigarettes regularly smoked.

The magnitude of the effects of other cigarette smoking characteristics (e.g., smoking duration and cessation or age at first exposure) also has not been systematically reviewed. Although duration of smoking has been evaluated less often than intensity, some narrative reviews reported an unquantified positive dose–response relation. According to some reviews, former cigarette smokers seem to have a reduced incidence of urinary tract cancer as compared with current smokers. Age at first exposure to smoking has been reported only occasionally in narrative reviews of cigarette smoking and urinary tract cancer.

The purpose of the current study was to review all epidemiologic studies from 1966 to March 2000 more systematically; to provide quantitative summary estimates of the risk of urinary tract cancer with emphasis on smoking status, duration, amount, cessation, and age at first exposure based on these studies; and to evaluate changes in summary estimates according to differences in study methodology.

METHODS

Search Strategy

The study design has been published previously. Epidemiologic studies were identified through computerized MEDLINE, CANCERLIT, and Current Contents searches for follow-up and case–control studies published until March 2000. The keywords used were urologist*, bladder, cyst*, vesic*, kidney, glomerul*, nephritis*, pyel*, renal, ureteral, urethral, transitional cell, cancer, carcinogen*, tumor*, neoplasm*, oncology, risk, etiology, epidemiology, and causality. References cited in published original and review articles were examined further. For inclusion in this analysis, the articles had to provide sufficient information to estimate a summary odds ratio and the associated standard error of incident primary urinary tract cancer for at least one of the following cigarette smoking characteristics: cigarette smoking status, average daily cigarette consumption, total duration of cigarette consumption, number of years since cessation, and age at first exposure of smoking. Urinary tract cancer was defined as cancer of the renal pelvis, ureter, urinary bladder, or urethra.

Data Collection

We developed a criteria list for the assessment of quality items (study characteristics) in observational cancer research. This list is used to provide covariables for inclusion in meta-regression models to explore reasons for observed heterogeneity in results between observational studies. The criteria list has been validated on published articles on alcohol intake associated with bladder cancer through consensus meetings with experts on the fields of cancer and meta-analysis. The list calls for the following: general information—year of publication, research design (case–control study, follow-up study, other, unknown), and geographic area (Europe, United States, Asia, Africa, unknown); exposure information—exposure measurement (personal interview, telephone interview, questionnaire, medical records, other, unknown), trained interviewer (yes, no, not applicable [n/a], unknown), validation exposure measurement (yes, no, unknown), and reference period (number of years, lifetime, unknown); case information—source cases (hospital, population, other, unknown), site carcinoma (renal pelvis, ureter, urinary bladder, urethra, unknown), histologic confirmation cases (yes, no, unknown), and percentage transitional cell tumors; case–control study information—source controls (hospital, population, neighborhood, other, n/a, unknown), response rate (percentage, n/a, unknown), and blinding of case status (yes, no, n/a, unknown); follow-up study information—source study population (volunteer, population, other, n/a, unknown), years of follow-up (number of years, n/a, unknown), blinding of exposure status (yes, no, n/a, unknown), and completeness of follow-up (percentage, n/a, unknown).

We extracted data allowing us to calculate both unadjusted and adjusted odds ratios to estimate the association between cigarette smoking and the risk of urinary tract cancer. We constructed two-way contingency tables for each study, based on exposure frequency distributions, to calculate the unadjusted odds ratios. Adjusted odds ratios were extracted directly from the original reports. Because we considered age and gender to be the most important confounding variables, the authors of the original articles had to have adjusted for at least these two variables for inclusion in the calculation of adjusted summary estimates. If studies reported gender-stratified age-adjusted odds ratios, we combined these estimates by
calculating age- and gender-adjusted odds ratios, because from both theoretically and statistically points of view, gender is probably a confounder in the association between cigarette smoking and bladder cancer. For studies that reported separate adjusted odds ratios for several exposure strata, we combined the exposure specific odds ratios by using the prevalence of the noncases as weight. Summary odds ratios were calculated for smoking status (non-, former, and current smoker), smoking amount (0, 1–20, and > 20 cigarettes/day), smoking duration (≤ 20 and > 20 years), smoking cessation (> 10 and ≤ 10 years), and age at first exposure of smoking (20 years and ≤ 20 years). Unfortunately, most component studies did not include simultaneously different smoking characteristics in a regression model to estimate the impact of cigarette smoking status, amount, duration, and age at first exposure solely.

Statistical Analysis
To detect publication or related biases, we explored heterogeneity in funnel plots, i.e., plots of effect estimates against their estimated precision (reciprocal of the variance). We examined funnel plot asymmetry visually and measured the degree of asymmetry by using Egger’s unweighted regression asymmetry test. If a study has appeared in more than one publication, data from the last publication were used for statistical analysis. We estimated the summary odds ratios and corresponding 95% confidence intervals (CIs) with random effects meta-regression analysis by using the Stata statistical software. The between-study variance was estimated iteratively, by using the empiric Bayes method. We analyzed the results for smoking status by incident bladder cancer (n = 5) and the results of the current meta-analysis.

RESULTS
Study Characteristics
We identified 59 articles reporting follow-up or case–control studies on cigarette smoking and incident urinary tract cancer published between 1968 and 1998 (Table 1). Generally, the association between cigarette smoking and urinary tract cancer was not the main research hypothesis. Eighteen articles were excluded from the analyses because the same study appeared in publications that were more recent. The remaining 41 articles described 8 follow-up studies and 35 case–control studies. One case–control study that provided separate associations for parts of the study performed in the United States, United Kingdom, and Japan was considered as three separate studies. The case–control studies were population-based (n = 12), hospital-based (n = 26), and neighborhood-based (n = 1). Two case–control studies used both population- and hospital-based controls. The controls in most hospital-based case–control studies did not have any smoking-related disease. The case–control studies also varied with regard to their criteria of case selection. Thirteen case–control studies identified cancer cases in defined populations, and two case–control studies used both populations and hospitals. Information on cigarette smoking was obtained by interview (n = 10), self-administered questionnaire (n = 12), or both techniques (n = 1). One follow-up study used medical files to obtain data on cigarette smoking. Some studies included all neoplasms of the urinary tract as cases, of which greater than 90% were found to involve bladder cancer (n = 11). Other studies defined case status by incident bladder cancer (n = 19) or carcinomas of the renal pelvis (n = 1) or carcinomas of renal pelvis and ureter combined (n = 2). Most studies used historically confirmed cases with transitional cell carcinomas (Table 1).

Risk Estimation
We could not identify heterogeneity in funnel plots, neither visually nor in terms of statistical significance (P values ≥ 0.40 for current smoking) (Fig. 1). Tables 2 and 3 summarize the unadjusted and adjusted results of observational studies reporting the associations for different cigarette smoking characteristics, respectively.

Current cigarette smokers have approximately three times the risk of urinary tract cancer of nonsmokers. The adjusted summary odds ratios for current cigarette smokers compared with nonsmokers were 3.18 (CI, 2.35–4.29) for studies with men, 2.90 (CI, 2.01–4.19) for studies with women, and 3.33 (CI, 2.63–4.21) for studies with men and women combined (Table 3). Smoking cessation might be beneficial, although former smokers still have an increased risk of
TABLE 1
Study Characteristics of Published Epidemiologic Studies Concerning Cigarette Smoking and Cancer of the Urinary Tract, Ordered by Year of Publication

<table>
<thead>
<tr>
<th>Ref.</th>
<th>First author</th>
<th>Year</th>
<th>Country</th>
<th>Anatomic site</th>
<th>Cohort study</th>
<th>Case source</th>
<th>Control source</th>
<th>Cigarette smoking assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Dunham</td>
<td>1968</td>
<td>U.S.</td>
<td>Bladder</td>
<td>—</td>
<td>Both</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>20</td>
<td>Anthony</td>
<td>1970</td>
<td>U.K.</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>21</td>
<td>Tyrrell</td>
<td>1971</td>
<td>Ireland</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>22</td>
<td>Armstrong</td>
<td>1976</td>
<td>U.K.</td>
<td>Renal pelvis</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>23</td>
<td>Miller</td>
<td>1977</td>
<td>Canada</td>
<td>Bladder</td>
<td>—</td>
<td>Population</td>
<td>Populationa</td>
<td>Interview</td>
</tr>
<tr>
<td>24</td>
<td>Wynder</td>
<td>1977</td>
<td>U.S.</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>25</td>
<td>Tola</td>
<td>1980</td>
<td>Finland</td>
<td>Bladder</td>
<td>—</td>
<td>Population</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>26</td>
<td>Vineis</td>
<td>1980</td>
<td>Italy</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>27</td>
<td>Vineis</td>
<td>1983</td>
<td>Italy</td>
<td>Urinary tractd</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>28</td>
<td>Vineis</td>
<td>1984</td>
<td>Italy</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>29</td>
<td>Morrison</td>
<td>1984</td>
<td>U.S./U.K./Japan</td>
<td>Urinary tractd</td>
<td>—</td>
<td>Hospital</td>
<td>Population</td>
<td>Interview</td>
</tr>
<tr>
<td>30</td>
<td>Hartge</td>
<td>1985</td>
<td>U.S.</td>
<td>Bladder</td>
<td>—</td>
<td>Population</td>
<td>Population</td>
<td>Interview</td>
</tr>
<tr>
<td>31</td>
<td>Marret</td>
<td>1985</td>
<td>U.S.</td>
<td>Bladder</td>
<td>—</td>
<td>Population</td>
<td>Population</td>
<td>Interview</td>
</tr>
<tr>
<td>32</td>
<td>Rebeckas</td>
<td>1985</td>
<td>Greece</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>33</td>
<td>Vineis</td>
<td>1985</td>
<td>Italy</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>34</td>
<td>Wynder</td>
<td>1985</td>
<td>U.S.</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>35</td>
<td>Bravo</td>
<td>1986</td>
<td>Spain</td>
<td>Urinary tractd</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Questionnairef</td>
</tr>
<tr>
<td>36</td>
<td>Brownson</td>
<td>1987</td>
<td>U.S.</td>
<td>Bladder</td>
<td>—</td>
<td>Population</td>
<td>Hospital</td>
<td>Questionnairef</td>
</tr>
<tr>
<td>37</td>
<td>Hartge</td>
<td>1987</td>
<td>U.S.</td>
<td>Bladder</td>
<td>—</td>
<td>Population</td>
<td>Population</td>
<td>Interview</td>
</tr>
<tr>
<td>38</td>
<td>Vineis</td>
<td>1988</td>
<td>Italy</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>40</td>
<td>Steinmeyer</td>
<td>1988</td>
<td>Sweden</td>
<td>Urinary tractd</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Questionnairef</td>
</tr>
<tr>
<td>41</td>
<td>Augustine</td>
<td>1988</td>
<td>U.S.</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>42</td>
<td>La Vecchia</td>
<td>1989</td>
<td>Italy</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>43</td>
<td>Burch</td>
<td>1989</td>
<td>Canada</td>
<td>Bladder</td>
<td>—</td>
<td>Both</td>
<td>Population</td>
<td>Interview</td>
</tr>
<tr>
<td>44</td>
<td>Helblsouër</td>
<td>1989</td>
<td>U.S.</td>
<td>Bladder</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Questionnairef</td>
</tr>
<tr>
<td>45</td>
<td>Cavel</td>
<td>1989</td>
<td>France</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>46</td>
<td>Ross</td>
<td>1989</td>
<td>U.S.</td>
<td>Renal pelvisa</td>
<td>—</td>
<td>Population</td>
<td>Neighborhood</td>
<td>Interview</td>
</tr>
<tr>
<td>47</td>
<td>D’Avanzo</td>
<td>1990</td>
<td>Italy</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>48</td>
<td>Hartge</td>
<td>1990</td>
<td>U.S.</td>
<td>Bladder</td>
<td>—</td>
<td>Population</td>
<td>Population</td>
<td>Interview</td>
</tr>
<tr>
<td>49</td>
<td>Iyer</td>
<td>1990</td>
<td>U.S.</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>50</td>
<td>Harris</td>
<td>1990</td>
<td>U.S.</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>51</td>
<td>La Vecchia</td>
<td>1991</td>
<td>Italy</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>52</td>
<td>Mills</td>
<td>1991</td>
<td>U.S.</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>53</td>
<td>Lopez-Obente</td>
<td>1991</td>
<td>Spain</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Both</td>
<td>Interview</td>
</tr>
<tr>
<td>54</td>
<td>De Stefanis</td>
<td>1991</td>
<td>Uruguay</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>55</td>
<td>Burns</td>
<td>1991</td>
<td>U.S.</td>
<td>Bladder</td>
<td>—</td>
<td>Population</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>56</td>
<td>D’Avanzo</td>
<td>1992</td>
<td>Italy</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>57</td>
<td>Kunze</td>
<td>1992</td>
<td>Germany</td>
<td>Urinary tractd</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>59</td>
<td>Cordier</td>
<td>1993</td>
<td>France</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>60</td>
<td>Chyou</td>
<td>1993</td>
<td>U.S.</td>
<td>Urinary tractd</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Interview</td>
</tr>
<tr>
<td>61</td>
<td>Hayes</td>
<td>1993</td>
<td>U.S.</td>
<td>Urinary tractd</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Interview</td>
</tr>
<tr>
<td>62</td>
<td>Sorahan</td>
<td>1994</td>
<td>U.K.</td>
<td>Urinary tractd</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Interview</td>
</tr>
<tr>
<td>63</td>
<td>Barbone</td>
<td>1994</td>
<td>Italy</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>64</td>
<td>Vincaino</td>
<td>1994</td>
<td>Zimbabwe</td>
<td>Bladder</td>
<td>—</td>
<td>Population</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>65</td>
<td>Thomas</td>
<td>1994</td>
<td>France</td>
<td>Bladder</td>
<td>—</td>
<td>Population</td>
<td>Population</td>
<td>Interview</td>
</tr>
<tr>
<td>67</td>
<td>Trembly</td>
<td>1995</td>
<td>Canada</td>
<td>Bladder</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Medical files</td>
</tr>
<tr>
<td>68</td>
<td>D’Avanzo</td>
<td>1995</td>
<td>Italy</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>69</td>
<td>McCarthy</td>
<td>1995</td>
<td>U.S.</td>
<td>Bladder</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Questionnairef</td>
</tr>
<tr>
<td>70</td>
<td>Murata</td>
<td>1996</td>
<td>Japan</td>
<td>Bladder</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Questionnairef</td>
</tr>
<tr>
<td>71</td>
<td>Braummer</td>
<td>1996</td>
<td>U.S.</td>
<td>Bladder</td>
<td>—</td>
<td>Population</td>
<td>Both</td>
<td>Interview</td>
</tr>
<tr>
<td>72</td>
<td>Engelmark</td>
<td>1996</td>
<td>Norway</td>
<td>Urinary tractd</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Questionnairef</td>
</tr>
<tr>
<td>73</td>
<td>Beekheme</td>
<td>1997</td>
<td>Egypt</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>74</td>
<td>Donato</td>
<td>1997</td>
<td>Italy</td>
<td>Bladder</td>
<td>—</td>
<td>Hospital</td>
<td>Hospital</td>
<td>Interview</td>
</tr>
<tr>
<td>75</td>
<td>Treske</td>
<td>1997</td>
<td>Canada</td>
<td>Bladder</td>
<td>—</td>
<td>Population</td>
<td>Population</td>
<td>Interview</td>
</tr>
<tr>
<td>76</td>
<td>Sorahan</td>
<td>1998</td>
<td>U.S.</td>
<td>Urinary tractd</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Interview</td>
</tr>
<tr>
<td>77</td>
<td>Kivisalo</td>
<td>1998</td>
<td>Finland</td>
<td>Bladder</td>
<td>—</td>
<td>Population</td>
<td>Population</td>
<td>Questionnairef</td>
</tr>
</tbody>
</table>

a And neighborhood.
b Study has appeared in more than one publication.
c Self-administered questionnaire.
d Includes bladder carcinoma and at least one other urinary tract cancer.
e And ureter.
f Only data from population controls were used.
urinary tract cancer compared with nonsmokers. The adjusted summary odds ratios for former smokers were 2.90 (CI, 1.41–5.98), 1.34 (CI, 1.03–1.74), and 1.98 (CI, 1.72–2.29) for studies with men only, women only, or men and women combined, respectively (Table 3).

The risk of urinary tract cancer is associated with the number of cigarettes smoked per day (Table 3). The adjusted summary odds ratios for smoking up to 20 cigarettes per day ranged from 1.66 (CI, 0.93–2.97) for studies with women to 2.66 (CI, 2.06–3.42) for...
studies with men. Men or women who smoked more than 20 cigarettes per day appeared to have higher risks. The adjusted summary odds ratios were: 3.51 (CI, 2.73–4.52), 2.48 (CI, 1.34–4.61), and 3.15 (CI, 2.62–3.79) for studies with men only, women only, or men and women combined, respectively (Table 3).

For both smoking status and smoking amount, the unadjusted estimation for the summary odds ratios were usually lower than the age- and gender-adjusted estimates, although the unadjusted estimates were based on a larger set of studies (Table 2). For smoking duration, smoking cessation, and age at first exposure of smoking, only unadjusted summary odds ratios could be calculated.

The risk of urinary tract cancer increased with increasing duration of cigarette smoking (Table 2). Subjects who smoked for greater than 20 years appeared to develop urinary tract cancer at 2–3 times the rate in subjects who smoked cigarettes for less than 20 years. The corresponding summary odds ratios were 2.59 (CI, 1.83–3.67) for studies with men, 2.73 (CI, 1.63–4.57) for studies with women, and 2.13 (CI, 1.70–2.67) for studies in which the data for men and women were collapsed (Table 2).

The time since smoking cessation among former smokers also appeared to be an important smoking characteristic (Table 2). Men who stopped smoking for less than 10 years had higher risks of urinary tract cancer compared with men who stopped smoking for longer than 10 years (summary odds ratio, 1.23; CI, 0.80–1.87). However, the reduction in risk for women appeared to be greatest in the first decade after quitting, although this is only based on two case–control studies (summary odds ratio, 0.38; CI, 0.17–0.85).43,57 The summary odds ratio for studies with collapsed data on men and women was 1.36 (CI, 0.76–2.43) (Table 2).

Furthermore, persons who started smoking at younger ages (younger than 20 years) tended to have higher risks of urinary tract cancer compared with persons who start smoking at older ages (Table 2). The corresponding summary odds ratios were 1.25 (CI, 1.07–1.47) for studies with men, 1.70 (CI, 1.09–2.65) for studies with women, and 1.26 (CI, 1.12–1.42) for studies with men and women combined (Table 2).

Sensitivity Analysis

We further examined the crude association of current smoking by geographic area, year of publication, study design, measuring instrument, sources of cases and controls, and anatomic site of the tumor to explore their influence on the outcome estimates in studies that provided information for men and women combined (Fig. 2). No tests for interaction were statistically significant. Most subset specific summary odds ratios did not differ substantially, although it appeared that the odds ratios from studies published before 1980 were lower than from more recent studies. Furthermore, the summary associations for case–control studies were higher than for follow-up studies. Selection on anatomic site of the tumor did not alter the summary odds ratios (Fig. 2).

Population Attributable Risk

In the European Union, 28% of women and 43% of men smoke cigarettes.78 Based on these figures and the age-adjusted results of the current meta-analysis, our estimates show that cigarette smoking might account for 34.7% of all female urinary tract cancer,
whereas in men 50.0% of incidences of the disease may be associated with cigarette smoking.

DISCUSSION

The possible association between cigarette smoking and cancer of the urinary tract has been extensively investigated in 43 epidemiologic studies. These primary studies can be considered as the best available evidence. The summarized findings suggest a substantial increase of risk of urinary tract cancer for cigarette smokers. Smoking amount and smoking duration were positively associated with urinary tract cancer risk. For age at first exposure and smoking cessation, a negative association was found.

Unfortunately, the included studies did not provide sufficient information to estimate adjusted summary odds ratios for all smoking characteristics. For smoking duration, smoking cessation, and age at first exposure of smoking only unadjusted summary odds ratios could be calculated. The summary odds ratios for smoking status and smoking amount increased after adjustment for age and gender. Therefore, we expect the crude estimates for smoking duration, smoking cessation, and age at first exposure to be underestimated.

We did not attempt to uncover unpublished observations and excluded studies that did not meet the predetermined criteria. Publication bias might arise by excluding these studies. However, we could not identify funnel plot heterogeneity in our meta-analysis, either visually or in terms of statistical significance.

Because of potential heterogeneity in populations, designs, and analyses of various studies, we assumed that the true effects being estimated would vary between the studies in addition to the usual sampling variation in the estimates (within studies). To account for both sources of variation, we used random effects meta-regression analysis to combine the results from the primary studies. The random effect approach provides some allowance for heterogeneity in studies beyond sampling error.

The epidemiology of urinary tract cancer is rather complex. For example: substantial differences exist in urinary tract cancer rates between white and black people; urinary tract cancer is considerably more common in men than in women; and the incidence of this cancer varies between North America and Europe. The race of the study population in almost all component studies was white. Therefore, the influence of race on the association between cigarette smoking and urinary tract cancer could not be investigated in the current meta-analysis. For both men and women, we found similarly increased urinary tract cancer risks for cigarette smoking. Furthermore, the summary odds ratios were similar for different geographic areas.

Results from sensitivity analyses suggested that the summary odds ratios were comparable for differ-
ent types of exposure measurement, for different tumor sites, and for different sources of the cases and controls in the case–control studies. The summary estimates were also similar between the different years of publication, although studies published before 1980 yielded to a lower summary odds ratio than studies published after 1980. This difference could not be explained by diversity in population or methodology between studies published before and after 1980 and is probably an artifact of chance. It appeared that the summary estimates of case–control studies were somewhat higher than for follow-up studies. This contrast, although not statistically significant, might be a consequence of differential recall bias in case–control studies because patients with bladder cancer are possibly more sensitized toward recalling smoking habits than noncases.

The precise mechanism by which cigarette smoking causes urinary tract cancer has yet to be determined. The finding that both age at first exposure and cessation of exposure have an influence in modifying the summary odds ratio of urinary tract cancer might suggest that two stages in the mechanism of urinary tract carcinogenicity are involved, one early and one late.80 However, few studies simultaneously included different smoking characteristics in a regression model to estimate the independent contribution of these smoking characteristics. It seems most likely that the risk of urinary tract cancer is related to some of the large number of chemicals present in smoke. 2-Naphthylamine and 4-aminobiphenyl are the lead-

Severe alterations are the most frequently known molecular abnormalities in the etiology of bladder cancer.84 Furthermore, genetic polymorphisms, e.g., of the arylamine N-acetyltransferase or glutathione S-transferase Mu1 (GSTM1), may alter metabolism of tobacco carcinogens. Slow acetylation or lack of GSTM1 activity (which is present in 50% of whites) might result in a higher concentration of tobacco carcinogens in the bladder and consequently enhance the risk of bladder cancer among cigarette smokers.85–7 Unfortunately, the data of the current meta-analysis could not be stratified upon these or other polymorphisms. Besides the effect that many compounds in cigarettes can cause genotoxic events in the urothelium, cigarette smoking have been found to increase proliferation, as evidenced by hyperplasia of the urinary tract epithelium.9

In accordance with earlier reviews, it can be concluded that cigarette smoking is an important cause of urinary tract cancer for both men and women. Current cigarette smokers have an approximately threefold higher risk of urinary tract cancer than nonsmokers. This risk increases with the number of cigarettes smoked per day and the number of years smoked. Both age at first exposure and cessation of cigarette smoking have an influence on modifying the risk of urinary tract cancer. Approximately half of male urinary tract cancer and one-third of female urinary tract cancer might be attributable to cigarette smoking.

REFERENCES

15. Light RJ, Pillem DB. Quantitative procedures. In: Sum-

Smoking and Bladder Cancer/Zeegers et al. 637