Lipotoxicity and the role of maternal nutrition

Citation for published version (APA):

Document status and date:
Published: 01/02/2014

DOI:
10.1111/apha.12171

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 17 Sep. 2023
Lipotoxicity and the role of maternal nutrition

M. G. M. Pruis,1 P. A. van Ewijk,2,3 V. B. Schrauwen-Hinderling2 and T. Plösch1

1 Department of Pediatrics, Laboratory Medicine, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
2 Department of Radiology, Maastricht University Medical Center, Maastricht, the Netherlands
3 Department of Human Biology, Maastricht University Medical Center, Maastricht, the Netherlands

Abstract

Intrauterine malnutrition predisposes the offspring towards the development of type 2 diabetes and cardiovascular disease. To explain this association, the Developmental Origins of Health and Disease hypothesis was introduced, meaning that subtle environmental changes during embryonic and foetal development can influence post-natal physiological functions. Different mechanisms, including epigenetics, are thought to be involved in this foetal programming, but the link between epigenetics and disease is missing. There is increasing evidence that ectopic lipid accumulation and/or lipotoxicity is induced by foetal programming. The aim of this review is to provide insights into the mechanisms underlying lipotoxicity through programming, which contributes to the increase in hepatic and cardiac metabolic risk.

Keywords foetal programming, heart failure, lipotoxicity, non-alcoholic steatohepatitis, obesity.
fat may be mechanistically involved in the long-term programming of disease, thus linking epigenetic effects and physiological outcome.

This review highlights the relation between maternal nutrition and hepatic and cardiac lipid metabolism in adult offspring.

Complexity of nutritional programming

The investigation of the relationship between maternal diet and lipid metabolism in offspring is complex, as it is influenced by many factors. As the foetus develops at different rates during development, the timing of the insult is important in determining the specificity of programming. Several animal studies have shown the different effects of under- or overnutrition during different stages of pregnancy on programming of the foetus. For example, in a rat study in which dams were exposed to low-protein diets at different time-windows during pregnancy, timing was shown to have differential effects on offspring (Langley-Evans et al. 1996). Similarly, the timing of nutrient restriction in sheep was shown to be important for the phenotype of the offspring (Gilbert et al. 2005). This exposure effect is also well-documented in humans. During the Dutch Hunger Winter, the effects of maternal nutrient restriction on the offspring during late- and mid-gestation were especially pronounced (Ravelli et al. 1998, Roseboom et al. 1999).

In addition to exposure timing, nutritional conditions after weaning have been shown to be important for the health effects measured. In sheep exposed to pre- and/or post-natal undernutrition, it was found that a mismatch between pre- and post-natal nutrition leads to unfavourable outcomes (Cleal et al. 2007). Interestingly, pre- and post-natal exposure to a high-fat diet did not prevent development of raised blood pressure in a rat model (Khan et al. 2004). In fact, evidence accumulates that pre-natal exposure to a high-fat diet renders offspring especially sensitive to ‘lipotoxic’ effects of post-natal high-fat diets (Bruce et al. 2009).

Several studies demonstrated sex-specific effects of developmental exposure to under- or overnutrition (Khan et al. 2003, McMullen & Langley-Evans 2005, Samuelsson et al. 2013). However, an extensive review on sexual dimorphism and epigenetic programming can be found elsewhere (Gabory et al. 2009).

Programming effects are dependent on specific nutrient deficiency or surplus. At present, an increasing number of animal studies are performed using high-fat diets. Maternal exposure to a high-fat diet rich in saturated fatty acids had detrimental effects in offspring (Khan et al. 2003, 2005), while maternal exposure to polyunsaturated fatty acids showed beneficial effects in female rat offspring (Chechi & Cheema 2006). Ultimately, future research needs to determine which specific signals provoke the programming effects in the target tissues of the foetus. Paradoxically, a general surplus of fatty acids in a high-fat diet may out-compete transport of a single key fatty acid in the placenta, leading to a deficit in the presence of plenty.

The role of foetal programming in the development of non-alcoholic fatty liver disease in epidemiological studies

Several epidemiological studies implicate an intrauterine contribution to adult liver disease. Although there is little literature about the specific effects of maternal nutrition on birth size in humans, there are many papers highlighting these effects under extreme conditions, like severe starvation (exemplified by the Dutch Hunger Winter, see Ravelli et al. 1999). It should be noted, however, that intrauterine growth restriction may have a plethora of other (often unknown) causes. Human infants born small-for-gestational-age were found to have reduced liver dimensions, as measured by ultrasonography at birth (Latini et al. 2004). In addition, low birth size in men, but not women, is associated with increased total cholesterol in blood, which is at least partially regulated by the liver (Davies et al. 2004). A large Danish prospective record linkage study showed the strongest correlation between measures of birth size and cause-specific mortality for deaths attributed to liver cirrhosis (Andersen & Osler 2004). Fraser et al. examined the association of birthweight with adult markers of liver damage and function in a random sample of 2101 British women. They found a small but consistent inverse linear association between birthweight and adult age-adjusted levels of alanine aminotransferase (ALT) and gamma glutamyltransferase (GGT; Fraser et al. 2008). ALT and GGT are liver-specific markers and are considered biomarkers of non-alcoholic fatty liver disease (NAFLD). The inverse association of birthweight with ALT and GGT supports the hypothesis that intrauterine exposure may contribute to the onset of NAFLD.

Evidence of foetal programming in the development of NAFLD from animal models

There are large numbers of well-established animal models that have indicated a link between foetal growth and NAFLD. The first evidence for programming of NAFLD comes from models using nutritionally restricted diets, although the greatest impact is seen in overnourished models. Mouse models of maternal overweight or overnutrition have shown convincing evidence of foetal programming of NAFLD.
Lipotoxicity and maternal nutrition

M G M Pruis et al.

Acta Physiol 2014, 210, 296–306

Hepatic hypertrophy

Structural changes have been noted in the liver of offspring from malnourished mothers. Hepatic lobules of protein-restricted rat offspring were described as having double the mean volume of lobules from control livers, without changes in relative liver weight (Burns et al. 1997). Moreover, several mouse models of maternal malnutrition show hepatic hypertrophy in the offspring (Samuelsson et al. 2008, Shankar et al. 2010). While not every studies reports hepatic hypertrophy, increases in liver derived enzymes (ALT and AST) are sometimes observed (Gregorio et al. 2010, Ohen et al. 2010, Hyatt et al. 2011), a change that often accompanies hepatic hypertrophy and may appear in plasma after liver enlargement. Taken together, these results indicate that hepatic hypertrophy is a frequently noted phenomenon accompanying gestational malnutrition.

Hepatic hypertrophy can be induced by several factors including altered oxidative status, fatty acid metabolism, energy production and utilization, cell turnover and altered hepatocellular cytoplasmic, and nuclear morphology (Hall et al. 2012). Several of these factors have been reported in foetal programming of offspring health (Burns et al. 1997, Bruce et al. 2009).

Liver function

In addition to structural changes, there have been numerous reports that liver functionality is affected by maternal malnutrition. In rats partially deprived of protein during pregnancy, gluconeogenesis and hepatic glucose handling in offspring are altered compared to controls (Burns et al. 1997). Glucose output from lactate is increased in maternal low-protein offspring, which is related to the difference in glucose handling. One possible mechanism is increased glucogenesis because of the greater absolute phosphoenolpyruvate carboxykinase (PEPCK) activity found in these livers (Burns et al. 1997). Additionally, several animal models of maternal overnutrition indicate mitochondrial abnormalities in the liver of offspring (Bruce et al. 2009, Burgueno et al. 2013). Bruce et al. (2009) reported that the activity of the hepatic mitochondrial electron transport chain enzyme complex (I, II/III and IV) is reduced in offspring of high-fat-fed mothers. In the progression from NAFLD to non-alcoholic steatohepatitis, inflammatory pathways, which are also affected by foetal programming, are important. In that context, it has recently been reported that offspring from overnourished dams showed increased Kupffer cell numbers with impaired phagocytic function and raised reduced oxygen species synthesis together with reduced natural killer T cells and raised interleukin 12 and interleukin 18 levels (Mouralidarane et al. 2013).

Even though many of these animal models use different diets and different strategies, all accumulate fat in the liver and liver functionality seems to be altered in one way or the other (Table 1).

Lipotoxicity

Excessive hepatic fat storage has been shown in many animal models of foetal programming. While hepatic fat accumulation is not necessarily malignant, it is often associated with insulin resistance (Savage & Semple 2010). Models of maternal restriction, overnutrition and glucocorticoid exposure show increased body fat and altered hepatic lipid metabolism in offspring, accompanied by accumulating triglycerides and cholesterol, characteristics of hepatic steatosis (Bruce et al. 2009, Elahi et al. 2009, Drake et al. 2011, Ashino et al. 2012).

It is still unclear what is underlying the increased lipid accumulation. Impaired oxidative capacity (impaired mitochondrial function) may be of importance; on the other hand, several animal models report a lipogenic transcriptome signature early in the development of the liver (McCurdy et al. 2009, Shankar et al. 2010). Non-human primates of overnourished mothers show signs of NAFLD beginning in the early third trimester, including hepatic inflammation, oxidative stress, triglyceride accumulation and gluconeogenic gene activation (McCurdy et al. 2009). This is associated with PPAR gamma coactivator 1 alpha (PGC1a) deacylation and increased hepatocyte nuclear factor 4 alpha (HNF4a) expression in the foetal liver, suggesting an important early mechanism by which excess lipids may reprogram hepatic lipid and glucose metabolism in the liver. In this study, the elevation of hepatic triglyceride levels persisted until adolescence with a twofold increase in per cent body fat. Another study performed in rats found increased per cent liver weight, enlarged hepatocytes and lipid accumulation in livers of offspring at weaning; it is suggested that exposure to maternal overweight programs systemic changes in insulin and adiponectin levels and alteration of genes involved in carbohydrate metabolism, lipid biosynthesis and fatty acid catabolism. Interestingly, sterol regulatory element-binding protein 1 (SREBP1) was increased and identified as a common regulator of the altered genes, in addition, a decrease in PPAR-a-AMPK signalling was indicated (Shankar et al. 2010).

In contrast, Krasnow et al. (2011) found no differences in triglyceride accumulation and hepatic inflammation in
<table>
<thead>
<tr>
<th>Author</th>
<th>Model</th>
<th>Maternal diet</th>
<th>Nutritional exposure</th>
<th>Phenotype and mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undernutrition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burns et al.</td>
<td>Rat</td>
<td>Iso-caloric 8% protein diet</td>
<td>Gestation and lactation</td>
<td>Gluconeogenesis, glucose handling and structural changes in livers</td>
</tr>
<tr>
<td>Lillycrop et al.</td>
<td>Rat</td>
<td>50% protein of control diet</td>
<td>Conception and gestation</td>
<td>Hypomethylation of specific CpG dinucleotides in the hepatic Ppara promoter</td>
</tr>
<tr>
<td>van Straten et al.</td>
<td>Mouse</td>
<td>Iso-caloric 9% protein diet</td>
<td>Gestation</td>
<td>Hypermethylation of specific CpG dinucleotides in the hepatic Lxra promoter</td>
</tr>
<tr>
<td>Hyatt et al.</td>
<td>Sheep</td>
<td>50% of total control diet</td>
<td>30–80 days of gestation</td>
<td>Hepatic triglyceride accumulation, hepatic Pparg and Pgc1a upregulation</td>
</tr>
<tr>
<td>Overnutrition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ashino et al.</td>
<td>Mouse</td>
<td>High-fat chow diet 35% fat</td>
<td>1 week prior to conception, during gestation and lactation</td>
<td>Hepatic triglyceride accumulation, increased fat depot weight. Increased serum insulin, tumour necrosis factor alpha and interleukin 1β and reduced serum triglycerides. Increased hepatic JNK and I kappa B kinase phosphorylation and PEPCK expression</td>
</tr>
<tr>
<td>Bruce et al.</td>
<td>Mouse</td>
<td>45% fat diet</td>
<td>4 weeks prior to conception and during gestation and lactation</td>
<td>Hepatic steatohepatitis, mitochondrial dysfunction and upregulation of lipogenesis, oxidative stress and inflammatory pathways</td>
</tr>
<tr>
<td>Burgueno et al.</td>
<td>Rat</td>
<td>HF chow diet</td>
<td>15 days prior to conception and during gestation and lactation</td>
<td>Fatty liver with decreased hepatic mtDNA copy number and PGC1α mRNA expression</td>
</tr>
<tr>
<td>Dudley et al.</td>
<td>Rat</td>
<td>Semisynthetic 45% lard diet</td>
<td>Gestation and lactation</td>
<td>Comprised regulation of cell cycle progression in neonatal liver, with changes in cdkn1α gene expression and hypomethylation</td>
</tr>
<tr>
<td>Elahi et al.</td>
<td>Mouse</td>
<td>Semisynthetic 45% lard diet</td>
<td>6 weeks prior to conception and during gestation and lactation</td>
<td>Systolic blood pressure increased; fatty liver development</td>
</tr>
<tr>
<td>Gregorio et al.</td>
<td>Mouse</td>
<td>HF chow diet 49% fat</td>
<td>Gestation and/or lactation</td>
<td>Increase in hepatic steatosis score and sterol regulatory element-binding protein-1c expression</td>
</tr>
<tr>
<td>Krasnow et al.</td>
<td>Mouse</td>
<td>Semisynthetic 60% lard diet</td>
<td>Different periods prior to conception</td>
<td>Increased fat mass. No increase in hepatic triglycerides or inflammation</td>
</tr>
<tr>
<td>McCurdy et al.</td>
<td>Macaques</td>
<td>HF diet 32% fat and calorically dense treats</td>
<td>Prior to conception and during gestation and lactation</td>
<td>Hepatic triglyceride accumulation, activation of oxidative stress and gluconeogenic pathway</td>
</tr>
<tr>
<td>Mouralidarane et al.</td>
<td>Mouse</td>
<td>Semisynthetic 45% fat diet + condensed milk</td>
<td>6 weeks prior to conception and during gestation and lactation</td>
<td>Hepatosteatosis with raised alanine aminotransferase, hepatic triglycerides, and hepatic expression of interleukin (IL)-6, tumour necrosis factor alpha, transforming growth factor beta, alpha smooth muscle actin and collagen</td>
</tr>
<tr>
<td>Oben et al.</td>
<td>Mouse</td>
<td>Semisynthetic 45% fat diet + condensed milk</td>
<td>6 weeks prior to conception and during gestation and lactation</td>
<td>Increased steatosis score with raised plasma aspartate aminotransferase and collagen 1-a2 gene expression</td>
</tr>
<tr>
<td>Shankar et al.</td>
<td>Rat</td>
<td>40% excess calories via gastric cannulation</td>
<td>3 weeks prior to conception and during gestation</td>
<td>Increased liver weight and glycogen levels, with increased plasma insulin, leptin and resistin. Several metabolic pathways affected in the liver</td>
</tr>
<tr>
<td>Author</td>
<td>Model</td>
<td>Maternal diet</td>
<td>Nutritional exposure</td>
<td>Phenotype and mechanism</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>------------------------------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Yang et al.</td>
<td>Rat</td>
<td>Semisynthetic 45% lard diet</td>
<td>Gestation and lactation</td>
<td>Increased serum glucose and hepatic triglyceride levels. Decreased expression of Wnt1 and B-catenin protein</td>
</tr>
<tr>
<td>Zhang et al.</td>
<td>Mouse</td>
<td>Low carbohydrate, high unsaturated fat, high-protein diet</td>
<td>6 weeks prior to conception and during gestation and lactation</td>
<td>Reduced hepatic triglycerides with increased hepatic protein levels for CD36, carnitine palitoyltransferase 1 (CPT1) and peroxisomal proliferator-activated receptor a (PPARA)</td>
</tr>
<tr>
<td>Abbasi et al.</td>
<td>Rat</td>
<td>50% of total control diet</td>
<td>Day 11–21 of gestation</td>
<td>Overabundance of fatty acid transporter CD36 and FABP</td>
</tr>
<tr>
<td>Chan et al.</td>
<td>Sheep</td>
<td>50% of total control diet</td>
<td>Day 30–80 of gestation</td>
<td>Increased ectopic myocardial lipid with blunted tachycardia and an amplified inotropic response to hypotension with myocardial mRNA expression changes of Acc, Pparg and Fabp3</td>
</tr>
<tr>
<td>Han et al.</td>
<td>Cattle</td>
<td>50% of total control diet</td>
<td>Day 30–125 of gestation</td>
<td>Cardiac hypertrophy with upregulation of α-actin and thrombospondin</td>
</tr>
<tr>
<td>Slater-Jefferies et al.</td>
<td>Rat</td>
<td>50% protein restriction</td>
<td>Gestation</td>
<td>Increased cardiac lipid content with increased Ppara and Cpt1 expression. Promoter methylation of Ppara was decreased in neonatal cardiac tissue</td>
</tr>
<tr>
<td>Unterberger et al.</td>
<td>Sheep</td>
<td>70% of total control diet</td>
<td>Gestation</td>
<td>A trend towards decreased mass and DNA hypomethylation in cardiac tissue in neonates</td>
</tr>
<tr>
<td>Vaiman et al.</td>
<td>Rat</td>
<td>Iso-caloric 9% casein diet wt/wt</td>
<td>Gestation</td>
<td>Reduced liver, heart and kidney weight in foetal tissues. With the heart being least affected by epigenetic machineries</td>
</tr>
<tr>
<td>Fernandez-Twinn et al.</td>
<td>Mouse</td>
<td>20% lard wt/wt</td>
<td>Before conception and during gestation and lactation</td>
<td>Increased cardiac mass and other structural changes with increased expression of molecular markers of cardiac hypertrophy. Associated with hyperinsulinemia, AKT, ERK and mTOR activation</td>
</tr>
<tr>
<td>Turdi et al.</td>
<td>Mouse</td>
<td>Semisynthetic 45% lard diet</td>
<td>Gestation and lactation</td>
<td>Decreased insulin sensitivity of the heart, cardiac hypertrophy and fibrosis</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>Sheep</td>
<td>150% of controls</td>
<td>60 days prior to conception until day 165 of gestation</td>
<td>Greater left ventricular mass with high workload impairments. Increased level of phosphor-JNK and phosphor-IRS-1, and a reduced IRS-1-dependent PI3K-Akt signalling activity</td>
</tr>
</tbody>
</table>

ACC, acetyl-CoA carboxylase; FABP, fatty acid-binding protein; PEPCK, phosphoenolpyruvate carboxykinase; Lxr, liver X receptor; Ppar, peroxisomal proliferator-activator receptor; Cpt, carnitine palitoyltransferase.
newborn mice. However, they reported an increase in fat mass in offspring from mothers fed a high-fat diet.

Currently, most of the research points towards programming of multiple aspects of energy-balance regulation in the offspring during gestational exposure to malnutrition. Therefore, an early change in a lipogenic pathway could be a cause in the development of NAFLD, because the transcriptome is already altered very early in life.

Epigenetics

During the past decade, the role of epigenetics in the pathogenesis of disease has been increasingly recognized. However, the specific role of epigenetics in the pathogenesis of NAFLD is largely unknown. A recent study in human patients showed a tight interaction between the presence of NAFLD and hepatic DNA methylation of PGC1α and mitochondrial transcription factor A promoters (Sookoian et al. 2010).

In rodents, numerous studies focus on the consequences of maternal nutrition on the liver epigeneome. Promoters of nuclear receptors are relatively well-studied candidates for differential methylation. Lillycrop et al. (2005, 2008) characterized changes in methylation and expression of the glucocorticoid receptor and peroxisome proliferator-activated receptor (Ppar) alpha. van Straten et al. (2010) made similar observations for the liver X receptor alpha (LXRa), among 200 other loci. It seems plausible that changes in these key factors have long-term consequences for the regulation of metabolism, especially under challenging nutritional conditions.

On the other nutritional extreme, two recent reports showed that maternal high-fat diet may alter DNA methylation and gene expression in the offspring. First, maternal high-fat feeding reduces methylation and increased expression of the cyclin-dependent kinase inhibitor 1A (Cdkn1a) during neonatal liver development (Dudley et al. 2011). This alteration is responsible for changing hepatic proliferation and liver size, two aspects that are compatible with the development of a fatty liver phenotype (Bruce et al. 2009). The second report demonstrated that in offspring with increased serum glucose and liver triglyceride levels, hepatic Wnt1 (wingless-type MMTV integration site family, member 1) activity is affected through histone modifications (Yang et al. 2012).

Epidemiological evidence of foetal programming in the development of cardiovascular disease

Barker and colleagues were the first to describe an association between maternal health status and mortality of offspring from cardiovascular disease and stroke. The relationship became apparent when investigating regional differences in mortality owing to stroke and cardiovascular disease in England and Wales (Barker & Osmond 1986, Barker et al. 1989). Currently, adverse effects of foetal programming on cardiovascular health are well-documented (McMillen & Robinson 2005).

Many studies report an increased prevalence of hypertension with low birthweight and report inverse correlations between birthweight and blood pressure (Huxley et al. 2000, 2002). The underlying mechanism of the relation between birthweight and blood pressure is not fully understood. Several mechanisms have been proposed, including reduced nephron number in low birthweight, possibly resulting in hyperfiltration and damage of the remaining nephrons, which favours the development of hypertension. Furthermore, vascular and endothelial dysfunction is associated with low birthweight, contributing to high blood pressure and microvascular structural changes observed in animal models of intrauterine growth restriction. Also, changes in the sympathetic nervous system may be involved in the increased risk to develop hypertension. Additionally, various studies report endocrine changes with high levels of aldosterone and cortisol in low birthweight, which can also influence blood pressure (Edvardsson et al. 2012).

Other systemic risk factors for cardiovascular disease besides blood pressure can be affected: it has been shown that oversupply of substrate during early development leads to changes in plasma metabolites. In that respect, increased plasma high-density lipoprotein cholesterol (HDL-C), triglycerides, apolipoprotein A1 (apoA1) and interleukin 6 (IL-6) concentrations were found in offspring of mothers with large gestational weight gain (Fraser et al. 2010).

The heart as target of foetal programming

Foetal programming not only influences systemic risk factors for cardiovascular disease but also affects the cardiac muscle directly. This can cause hypertrophy, hamper cardiac function and may modulate cardiac metabolism, lipid oxidation and lipid storage (Table 1).

Hypertrophy

Several animal studies show that both nutrient restriction and oversupply during perinatal development lead to cardiac hypertrophy in offspring. Cardiac gene expression in the offspring of nutritionally restricted steers showed upregulation of genes that are typically associated with maladaptive cardiac hypertrophy (Han et al. 2008). On the other hand, maternal obesity may also lead to hypertrophy in offspring, as investigated
in mice. Cardiac geometry and gene expression was shown to be affected in offspring of obese mice. These changes are suggested to be owing to the activation of the protein kinase B, the extracellular signal-regulated kinase and mammalian target of rapamycin pathway (AKT-ERK-mTOR pathway; Fernandez-Twinn et al. 2012).

A human study confirms the importance of maternal obesity in developing hypertrophy. The heart weight of 6-month-old infants was investigated by ultrasound and the offspring of the women who gained the greatest weight during pregnancy were characterized by heavier hearts than offspring from women with appropriate weight gain (Geelhoed et al. 2008).

Cardiac function

The environment during the early developmental phase seems to have lasting impact on contractile function of the heart with nutritional restriction (Chan et al. 2009) and oversupply impairing cardiac function in offspring, as shown in a study with an obese sheep model (Wang et al. 2010). Cardiac function in offspring may be normal at baseline, but impairments may become apparent at high workloads only, as shown in offspring of obese sheep (Wang et al. 2010).

It was shown that plasma levels of tumour necrosis factor alpha (TNF alpha) and leptin are elevated in offspring when ewes were obese and it was suggested that these changes may underlie the negative inotropic effect on the heart of the offspring (Oral et al. 1997, Vickers 2007).

Lipotoxicity

Excessive fat storage in the heart is related to cardiac pathology in obesity and diabetes, and is manifested in increased cardiac myocyte apoptosis, myocardial fibrosis, left ventricular chamber expansion, contractile dysfunction and impaired diastolic filling (McGavock et al. 2006). The association between cardiac lipid content and cardiac dysfunction is termed ‘cardiac lipotoxicity’ and has been described in several genetic rodent models in mice and rats.

In animal models, it was clearly shown that maternal undernutrition or nutrient restriction influences lipid metabolism and increases cardiac fat storage in offspring. The offspring of nutrient-restricted sheep responded differently to an obesogenic diet than the offspring of non-restricted animals, showing a three-fold higher increase in myocardial fat deposition. This was accompanied by altered myocardial mRNA expression of acetyl-CoA carboxylase, peroxisome proliferator-activated receptor gamma (PPARγ) and fatty acid-binding protein (FABP) 3 in the animals that were exposed to nutrient restriction during early development (Chan et al. 2009). Protein restriction during pregnancy in rats was also shown to result in increased cardiac lipid content in the offspring, together with increases in gene expression of PPARα and carnitine palmitoyl transferase 1 (CPT1; Slater-Jefferies et al. 2011).

The exact mechanism by which cardiac lipid content is increased in growth-restricted animal models is not identified. However, a study with intrauterine growth restriction in rats has shown overabundance of the fatty acid transporters CD36 and FABP in the hearts of growth-restricted animals, which may underlie or contribute to cardiac lipid accumulation (Abbasi et al. 2012).

As described above, cardiac lipid accumulation occurs in nutrient restriction/intrauterine growth retardation. However, results from animal models suggest that overconsumption of fat during pregnancy has similar effects on the offspring, increasing their susceptibility to the negative effects of a post-natal high-fat diet. Interaction of maternal high-fat diet with post-natal high-fat diet in mice was shown to decrease mitochondrial integrity in the heart and to increase cardiac lipid content. The offspring that were exposed to high-fat diet in utero also showed decreased insulin sensitivity of the heart, decreased cardiac function and was characterized by increased hypertrophy, apoptosis and fibrosis (Turdi et al. 2013).

Epigenetics

Very little is known about the epigenetic mechanisms involved in the changes that occur in the heart because of maternal over- or undernutrition. One of the few studies investigating this issue has been performed in baboons and found a trend towards DNA hypomethylation in cardiac tissue of the offspring that underwent nutrient restriction (Unterberger et al. 2009). A more recent study in mice has found that the offspring that had been subjected to protein restriction during gestation were characterized by decreased methylation of the promoter region of PPARα, resulting in changes in mRNA expression (Slater-Jefferies et al. 2011). However, when investigating epigenetic regulator genes in the offspring of protein-restricted rats, no significant changes could be detected in the heart (Vaiman et al. 2011). Clearly, more studies are needed to understand these mechanisms in detail. Future studies will have to address the epigenetic mechanisms that convey the cardiac effects of maternal high-fat feeding and overnutrition to the next generation.
Conclusion

Taken together, there is convincing evidence that prenatal exposure to either dietary shortage or overabundance increases the susceptibility for ectopic lipid accumulation in heart and liver. Furthermore, other metabolic-risk factors also rise owing to a suboptimal environment during early development: blood pressure can increase, cardiac function deteriorates, and plasma lipids and inflammatory markers can increase (Fig. 1). Together, these factors contribute to the phenomenon now known as Developmental Origins of Health and Disease or Barker hypothesis. The molecular mechanisms responsible for the programming of offspring have yet to be fully elucidated. Similar pathways in different organs that lead to the development of metabolic disease owing to programming should be investigated further. So far, in animal studies, it was found that protein restriction during pregnancy alters DNA methylation of the PPARα promoter in heart and liver of the offspring (Lillycrop et al. 2008, Slater-Jefferies et al. 2011) among others. Growing evidence supports the concept that epigenetic mechanisms play a role in foetal programming (Heerwagen et al. 2010, Jimenez-Chillaron et al. 2012), which may well be a common mechanism in the development of different organs. Future research will have to unravel the full impact of foetal programming on metabolic disease. The elucidation of underlying mechanisms will support the development of preventive strategies or the early identification of persons-at-risk.

Conflict of interest

The authors have no conflicts of interest to declare.

This research was performed within the framework of CTMM, the Center for Translational Molecular Medicine (www.ctmm.nl), project PREDICCt (grant 01C-104), and supported by the Dutch Heart Foundation, Dutch Diabetes Research Foundation and Dutch Kidney Foundation. Torsten Plosch is supported by the Dutch Heart Foundation (grant 2004T4801), the Netherlands Organization for Scientific Research (TOP ZonMw 40008129811053), and by the Dutch Technology Foundation STW (www.stw.nl), which is part of the Netherlands Organization for Scientific Research (NWO) and is partly funded by the Ministry of Economic Affairs. Vera Schrauwen-Hinderling is supported by a VENI (grant 91611136) for innovative research from the Netherlands Organization for Scientific Research (NWO).

References

