Sources of auditory selective attention and the effects of MPH in children with ADHD

Citation for published version (APA):

Document status and date:
Published: 01/01/2004

DOI:
10.1016/j.biopsych.2003.12.007

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 15 Sep. 2023
Sources of Auditory Selective Attention and the Effects of Methylphenidate in Children with Attention-Deficit/Hyperactivity Disorder

Chantal Kemner, Lisa M. Jonkman, J. Leon Kenemans, Koen B.E. Böcker, Marinus N. Verbaten, and Herman van Engeland

Background: The aim of this study was to determine 1) whether abnormal auditory selective attention in children with attention-deficit/hyperactivity disorder (ADHD), as reflected in the processing negativity (PN) of the event-related potential, is related to impaired frontal functioning; and 2) how methylphenidate (MPh) affects attentional functioning in ADHD.

Methods: Sources of electrical brain activity were estimated in healthy control children, in ADHD children without medication, and in children with ADHD during a placebo-controlled medication trial involving MPh.

Results: The source models showed that the PN is generated in the auditory cortex. Children with ADHD showed less activity related to selective attention in this brain region. Administration of MPh resulted in more frontally located sources.

Conclusions: The results showed no evidence for an important role of the frontal cortex in abnormalities in selective attention in children with ADHD. Also, the data did not indicate that MPh normalizes brain activity in these children.

Key Words: Attention-deficit/hyperactivity disorder, methylphenidate, processing negativity, selective attention, auditory, source

Abnormal patterns of electrical brain activity (event-related potentials [ERPs]) are often found in children with attention-deficit/hyperactivity disorder (ADHD) during the performance of selective attention tasks, especially activity reflecting the selective processing of a specific channel of information, the processing negativity (PN) (e.g., Barry et al 2003; Jonkman et al 1997a). Studies of normal control subjects show that the selective processing of an auditory channel modulates the activity of both the auditory cortex and frontal areas (Dien et al 1997; Lipschutz et al 2002). Impaired functioning of the frontal–striatal circuitry is often associated with ADHD symptoms (Barry et al 2003; Swanson et al 1998; Tannock 1998); however, it is not clear whether the abnormalities seen in studies of selective attention are indeed related to abnormal functioning in frontal areas. In the above-mentioned ERP studies, there was no identification of the source of abnormal brain activity, such as can be done by brain source analysis.

Brain source analysis can also be used to study the role of methylphenidate (MPH) in attentional processing in ADHD. Methylphenidate is currently the most effective treatment for the symptoms of ADHD, but its mechanism of action is not yet known. The fact that MPH affects dopaminergic functioning might indicate that it influences frontal functioning in children with ADHD. It is important to know whether MPH ameliorates an existing deficit or whether it activates compensatory mechanisms.
or anatomically or physiologically implausible solutions. Six orientation parameters (x, y, z values for both the left and right hemisphere), three location parameters (x, y, z values, because the location was mirror symmetrical), and two moment values were determined for each subject. Group differences (control children \(n = 17\) vs. ADHD children \(n = 16\), and ADHD children treated with either placebo \(n = 13\) or MPH \(n = 15\)) in these parameters were determined with independent \(t\) tests. To compensate for the increased possibility of type 1 errors due to the large number of tests, a significance level of \(p < .01\) was used for the location and orientation tests. Because Jonkman et al (1997a) found an amplitude difference of the PN between control and ADHD children, a less conservative \(p\) value of .05 was chosen for the moment values of this comparison.

First, source models for the early auditory peaks N1 and P2 were fitted for the standards in the nonattended channel in the nonmedication condition to test the reliability of the source modeling procedure in children, especially the children with ADHD. Second, to test for the effect of selective attention, difference waves were computed by subtracting the ERP to standards in the unattended channel from those in the attended channel and modeling the peak of the resulting difference wave (or PN) at 300 msec in the averaged data.

Results

N1 and P2

A tangential dipole was found for N1 (dipole fitted at 100 msec) and a radial dipole for P2 (dipole fitted at 175 msec), with an RV less than 10% in both the control and the ADHD groups. Statistical analysis of the location, orientation, and moment parameters showed no differences between the groups, either for N1 or P2 (Figure 1).

PN: Control–ADHD Comparison

With a symmetrical dipole pair, a solution was found with an RV of less than 10% in the control group and an RV of 15% in the ADHD group. The inclusion of a second dipole pair did not result in improved fit for either group.
in a stable solution in the ADHD group. Statistical analysis showed significant group differences for the y-location \(t(31) = 3.42, p < .01 \), which indicates that PN sources were located more anteriorly in the ADHD group (Figure 2).

The right dipole moment differed between the groups \(t(31) = 2.39, p < .05 \), being larger in the control group than in the ADHD group \((45.7 \text{ vs. } 35.7, \text{control vs. ADHD group}) \). The group difference in the left dipole \((46.7 \text{ vs. } 35.7, \text{control vs. ADHD group}) \) did not reach significance.

PN: Placebo–MPh Comparison

A stable solution for the PN source was found with an RV of less than 10% in the MPh condition and 25% in the placebo condition. Inclusion of an additional dipole pair did not result in a stable solution in the placebo condition. A significant difference between the placebo and MPh conditions was found for the y-locations of the left dipole \(t(26) = -3.41, p < .01 \), which indicates a more frontal location in the MPh condition (Figure 2).

The PN data from the ADHD group (compared with the control group) and the placebo group were less reliable because the initial source model had an RV greater than 10%. Therefore, the control group and the MPh group (both with an RV less than 10%) were compared directly as an additional test to determine the effect of MPh on PN. The groups had a different y-location \(t(30) = -6.1, p < .001 \), which indicates that the source location was more frontal in the ADHD children treated with MPh than in the control group (Figure 2).

Discussion

It was possible to model the early ERP peaks N1 and P2 in both control children and children with ADHD by a tangential and a radial dipole solution, which are thought to reflect activity from primary and secondary auditory cortex (Albrecht et al 2000; Ponton et al 2000). The parameters of N1 and P2 to nonattended standards were not different between the groups, which indicates the integrity of early auditory processes in nonattended stimuli in children with ADHD, in accordance with most of the literature (Barry et al 2003). Activation related to selective attention (i.e., PN) was modeled reliably in the normal control group, with a source originating in the auditory sensory cortex. Children with ADHD showed more anteriorly located sources, but the location of these sources was still within the auditory sensory cortex. It has to be noted, though, that any conclusions with respect to the children with ADHD can only be made tentatively because the dipole solution did not reach the RV criterion for a reliable solution, probably because of the lack of power of the signal. The dipole moment was smaller in the children with ADHD (though significantly so only for the right dipole). These results indicate that auditory cortical activity is modulated less in children with ADHD than in control children during performance of a selective auditory task. It has been suggested often that the frontostriatal circuit, which is important in executive functions, such as selective attention, is functioning abnormally in children with ADHD (see, e.g., Tannock 1998), however, the data do not support an important role for abnormal frontal functioning in children with ADHD in the selective attention task as used in the present study.

The source of PN activity was located more anteriorly in children with ADHD treated with MPH than in children with ADHD treated with placebo or in control children. This indicates that MPH does not normalize the brain activity related to selective attention in children with ADHD, but rather that it influences other sources of activity. It is difficult to speculate on the brain structure influenced by MPH. The locus of the dipole source in the MPh condition might reflect (additional) activity in a different part of the auditory cortex or activity related to motor activity (Ilic et al 2003; Moll et al 2003). To conclude, there is no clear evidence found that the frontal cortex has an important role in abnormalities in auditory selective attention in children with ADHD or that MPH normalizes brain activity in these children.

