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abstract

This paper proposes a structural time-series model for the intraday price
dynamics on fragmented financial markets. We generalize the structural model
of Hasbrouck (1993) to a multivariate setting. We discuss identification issues
and propose a new measure for the contribution of each market to price
discovery related to the Hasbrouck (1995) information shares. We apply the
model to two sets of Nasdaq dealer quotes. ( JEL: C32, F31)

keywords: High-frequency data, microstructure, structural time-series
models

The markets in many financial assets are fragmented. To give a few exam-
ples, NYSE-listed U.S. stocks are often also traded on regional exchanges; many
European stocks are cross-listed on the NYSE or Nasdaq; on Nasdaq itself and in
the foreign exchange and bond markets, there are multiple dealers and the mar-
kets for the trading between dealers and their clients is quite separated from the
interdealer market.

Price discovery models aim to describe the dynamic interactions between the
quotes or transaction prices from two or more markets, or from two or more dealers
of the same asset. Based on these dynamics, the relative contribution of each market
or dealer to the price discovery process can be assessed.
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The most natural model for prices pit on market i (or quotes by dealer i) is
that they equal the fundamental value of the asset, p∗

t , plus a transitory term:1

pit = p∗
t + uit . (1)

In the Madhavan (2000) survey this model forms the basis to analyze trading
frictions, asymmetric information, and inventory control. Equation (1) is in the
form of an unobserved components model, or a structural time-series model in the
econometrics terminology of Harvey (1989). Prices are observed, but the efficient
price (or fundamental value) p∗

t is not. The fundamental value is assumed to
be a random walk, whereas the market (dealer)-dependent transitory term uit is
stationary and typically close to white noise. The price changes, �pit , therefore
have a very typical serial correlation pattern: a strong and negative first-order
autocorrelation, and small and often negligible higher-order autocorrelations.

Despite its intuitive appeal, the unobserved components model is rarely used
in empirical work, neither for estimation nor for the definition of measures of
price discovery. Starting with Hasbrouck’s (1995) pioneering work, the standard
time-series model proposed by Hasbrouck (1995) is the Vector AutoRegression in-
troduced by Sims (1980) in macroeconomics. Since all price series share the same
long-term (random walk) component, the VAR is subject to cointegration restric-
tions and estimated as a vector error correction model (VECM). The central quantity
of interest is the information share, which measures the relative importance of each
market in the price discovery process. Hasbrouck (1995) defines the information
share as the fraction of the variance of the random walk component that can be
attributed to a particular market (or dealer). The VECM and information share
methodology have been applied in many empirical studies.2

In this paper, we revisit the unobserved components microstructure model
of Hasbrouck (1993) in Equation (1) and extend it to a multiple markets setting.
The information flow is modeled through the simultaneous and lagged covari-
ances between the “noise” terms in (1) and the innovations in the fundamental
value. Within this model, we introduce a new measure of the contribution to
price discovery. Unlike the traditional information share, which is defined within
a reduced-form time-series model, the new measure is defined directly within the
unobserved components model. Apart from its intuitive appeal as a model for
financial market data, working directly within the unobserved components model
has several other advantages over the VECM approach in settings with many
markets or many dealers.

1See, for example, Hasbrouck (1993), Zhou (1996), Lehmann (2002), and Bandi and Russell (2006) for a
variety of applications.

2For example, Hasbrouck (1995) and Harris et al. (2002) for U.S. equities traded on the NYSE and regional
exchanges; Taylor (2008) for the various futures contracts on the S&P500; Hupperets and Menkveld (2001)
for European equities cross-listed in the U.S.; Upper and Werner (2002) for the relation between the cash
and futures market in German government bonds; De Jong, Mahieu, and Schotman (1998); Covrig and
Melvin (2002) for the foreign exchange market; Mizrach and Neely (2008) for the U.S. Treasury market;
and Dittmar and Yuan (2008) for the relation between corporate and sovereign bonds in emerging
markets.
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JONG & SCHOTMAN | Price Discovery in Fragmented Markets 3

First, the particular pattern of autocorrelations in prices (or quotes) is difficult
to describe with low-order autoregressive models. Autoregressions often require
long lags to capture a strong negative first-order autocorrelation and a second au-
tocorrelation that is almost zero. The reduced form of the unobserved components
model is a vector-moving average process that can fit the data at least as well as the
VECM. The VECM also suffers from lack of parsimony in the error correction part.
In a model with N dealers, the cointegration restrictions lead to N − 1 different
error correction terms in each of the N equations. The parsimony of the unobserved
components model has advantages both for the statistical inference as well as the
definition of information shares.

Related to this is a potential problem with the data. Although microstructure
time series have many observations, we do not always have that many observa-
tions for all markets (dealers). For example, the NYSE is much more active than
its regional satellite markets; foreign exchange dealers are often at a few large
banks; most Nasdaq quotes are issued by a handful of dealers and the electronic
communication networks (ECN). In these circumstances the time series for a multi-
variate model of dynamic interactions is sampled at the pace of the slowest market
(Harris et al., 2002) or with relatively long, fixed calendar intervals. This problem
is particularly serious for large-dimensional systems, that is, a setting with multi-
ple markets. When the number of dealers increases, the number of simultaneously
available observations generally decreases, but the number of parameters in a VAR
increases quadratically with the number of time series. In the unobserved compo-
nents model it is also straightforward to deal with differences in observation period
across markets, caused by holidays, missing data, etc.3

Finally, the VECM model has problems in the construction of information
shares. These are not uniquely defined, but depend on the allocation of the co-
variance terms in the error covariance matrix. Hasbrouck (1995) suggests to report
upper and lower bounds, obtained by different ordering of the markets. For a
two-variable system these bounds are sometimes fairly narrow, but there are also
applications (for example, Covrig and Melvin, 2002) where the bounds are very
wide. In a high-dimensional system, the number of off-diagonal elements in the
covariance matrix increases quadratically in N, and will eventually dominate the
variance decomposition, so that it is difficult to obtain meaningful estimates of
the information shares. Our proposed information share measure does not depend
on an arbitrary way to split the correlation of the reduced-form error term over the
markets, and will therefore remain meaningful in high-dimensional settings.

The unobserved components model is appealing in these situations, but has
a drawback of its own. Since Equation (1) contains the efficient price as a latent
variable, there is an inherent identification problem.4 In the multivariate unob-
served components model, which is of interest for price discovery in fragmented

3Estimation methods based on Kalman filters are especially appropriate here. See, for example, Menkveld,
Koopman, and Lucas (2007).

4For the univariate version of the model, this identification problem is discussed in depth in Hasbrouck
(1993).
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markets, the identification problem turns out to be less severe. Full identification,
and hence a unique value for the information shares, is achieved under plausible
assumptions regarding the idiosyncratic term uit .

The structure of this paper is as follows. First, we provide a theoretical inves-
tigation of the properties of the structural price discovery model and discuss the
various identification rules. Next, we present our alternative measure for the con-
tribution to price discovery. We then extend the structural model to higher-order
dynamics and compare the implications of this model with the usual VECM ap-
proach. We examine the economic meaning of information shares within a stylized
theoretical microstructure model. We finally present two empirical applications.

1 A STRUCTURAL TIME-SERIES MODEL

This section explores a structural time-series model for market microstructure
and price discovery in fragmented markets. The model generalizes the univariate
model of Hasbrouck (1993) to a multiple market setting. This section first reviews
the results for a univariate pure random walk plus noise model. Then the model is
extended to a multivariate random walk plus noise. In a later section, higher-order
dynamics are introduced.

1.1 Univariate Model

Hasbrouck (1993) considers the univariate structural model for pt , the logarithm
of the price of a security:

pt = p∗
t + ut ,

p∗
t = p∗

t−1 + rt , Var(rt) = σ 2,
ut = αrt + et , Var(et) = ω2,

(2)

where p∗
t is the unobserved efficient price (random walk) and ut a transitory

component. The shocks et and rt are uncorrelated. The coefficient α determines the
covariance between transitory and permanent shocks: Cov(ut , rt) = ασ 2.

We can write the price changes (returns) in this model as

�pt = rt + �ut = (1 + α)rt − αrt−1 + �et . (3)

The auto-covariances of returns implied by this model are therefore

γ0 = E
[
�p2

t

] = σ 2((1 + α)2 + α2) + 2ω2, (4a)

γ1 = E[�pt�pt−1] = −σ 2α(1 + α) − ω2. (4b)

All higher-order covariances are zero, and therefore the reduced form of the struc-
tural model is a first-order Moving Average process in the price changes.

From the moment equations, the parameter σ 2 is uniquely identified as

σ 2 = γ0 + 2γ1. (5)
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JONG & SCHOTMAN | Price Discovery in Fragmented Markets 5

The parameters α and ω2 cannot be identified separately. Hence, some identifying
restriction is necessary. We first define a range of admissible values for α. From the
moment conditions we obtain

ω2 = −γ1 − α(1 + α)σ 2

= −γ0(ρ1 + α(1 + α)(1 + 2ρ1)), (6)

where ρ1 = γ1/γ0 is the first-order autocorrelation. For microstructure data, the
first-order autocorrelation is typically negative, but bigger than − 1

2 . For the inter-
pretation of the model, ω2 must remain non-negative. This provides a bound on
the admissible values of α. Equation (6) implies the inequality

−
√

1 − 2ρ1 ≤ (2α + 1)
√

1 + 2ρ1 ≤
√

1 − 2ρ1. (7)

These intervals typically contain both positive and negative values for α. Boundary
cases are ρ1 → − 1

2 , in which case α is not restricted at all, and ρ1 = 0, in which case
−1 ≤ α ≤ 0. For a typical first-order autocorrelation ρ1 = −0.3, we find the interval
−1 1

2 ≤ α ≤ 1
2 .

Two identifying restrictions are popular in the literature: the Beveridge–Nelson
(BN) normalization (ω2 = 0) and the Watson normalization (α = 0). The BN nor-
malization is always admissible. For admissibility of the Watson normalization
(α = 0), we need a negative first-order autocorrelation.5 Hasbrouck (1993) shows
that the choice of normalization for α may have an important effect on the variance
of the idiosyncratic term (Var(ut)) in empirical applications. In the UC model, we
can write the variance of the idiosyncratic term, using (2) and (6), as

Var(ut) = α2σ 2 + ω2 = −γ1 − ασ 2. (8)

The noise variance attains a lower bound when α is at its maximum value, which
corresponds to the BN normalization.

This completes the summary of Hasbrouck’s (1993) model. We now turn to a
multivariate generalization of his model.

1.2 Multivariate Model

Let pt now be a vector of N prices for the same asset from different markets. The
multivariate model reads,

pt = ιp∗
t + ut ,

p∗
t = p∗

t−1 + rt , Var(rt) = σ 2,
ut = αrt + et , Var(et) = 	,

(9)

5Morley, Nelson, and Zivot (2003) study the identification of α in a model with positive first-order
autocorrelation, which is typical for macroeconomic data. In that case, the range of admissible α may
not contain zero, and the Watson restriction is not feasible. But since the first-order autocorrelation for
microstructure return data is almost always negative, the Watson restriction is typically feasible for
microstructure data.
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6 Journal of Financial Econometrics

where α is an N-vector, ι is a vector of ones, and 	 a (N × N) matrix. Again,
Cov(ut , rt) = ασ 2. As in the univariate model, the innovations in the efficient price
and the transitory term may be correlated. By construction, all price series share the
same random-walk component and are therefore cointegrated. The price changes
(returns) in this model are written as

�pt = ιrt + �ut = (ι + α)rt − αrt−1 + �et , (10)

which lead to the moment conditions


0 = E[�pt�p′
t] = σ 2((ι + α)(ι + α)′ + αα′) + 2	, (11a)


1 = E[�pt�p′
t−1] = −σ 2α(ι + α)′ − 	. (11b)

All parameters in this model are (over-)identified, except the vector α, which is
only identified up to a translation along the unit vector. First, the sum of lead,
current, and lag covariances,


′
1 + 
0 + 
1 = σ 2ιι′, (12)

overidentifies the variance of the efficient price innovation. Next, consider the
difference between lead and lag cross-covariances:


1 − 
′
1 = σ 2(ια′ − αι′). (13)

From this, α can be identified up to a translation along ι. Finally, given the values for
σ 2 and α, the noise covariance matrix 	 can be identified either from Equation (11a)
or from the sum of the lead and lag covariances:


1 + 
′
1 = −σ 2(αι′ + ια′ + 2αα′) − 2	. (14)

The entire set of equivalent solutions is characterized by

α = α̃ − wι, (15a)

	 = 	̃ + wσ 2((1 − w)ιι′ + ια̃′ + α̃ι′), (15b)

where w is an arbitrary scalar and α̃ and 	̃ constitute an initial admissible solution.
Since 	 is a covariance matrix, it must be positive semidefinite. Therefore, not
all values for w are admissible, analogous to the univariate case. The range of
alternative equivalent combinations of α and 	 in the multivariate model is smaller
than in the univariate model. For each price series the univariate restrictions must
hold for the diagonal element ωi i and they must hold jointly. In addition, the
positive definiteness for 	 is stronger than just positive diagonal elements.

Analogous to the univariate model, the BN representation provides an admis-
sible solution (α̃, 	̃). The BN representation is obtained from the reduced form. The
reduced form of the multivariate random walk plus noise model is the first-order
vector-moving average (VMA) process,

�pt = εt − Cεt−1, Var(εt) = �, (16)
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JONG & SCHOTMAN | Price Discovery in Fragmented Markets 7

where cointegration requires that

C = I − ιθ ′ (17)

for some vector θ . The BN representation of the reduced form is

pt = ι p̃t + (I − ιθ ′)εt ,

p̃t = p̃t−1 + θ ′εt .
(18)

Under the BN restriction, the innovations in the permanent component are equal to
an exact linear combination of the VMA innovations: rt = θ ′εt . Since the variance
of the random-walk component is uniquely identified, we have

σ 2 = θ ′�θ . (19)

To relate the other parameters in the UC to the reduced-form parameters, we write

Cov(�pt , rt) = �θ = σ 2(ι + α), (20)

where the last equality follows from (10). This gives a particular choice for α that
we shall call the BN value,

α̃ = �θ/σ 2 − ι. (21)

For the BN normalization, the covariance matrix of et is semidefinite:

	̃ = � − �θθ ′�
θ ′�θ

. (22)

All other normalizations of α and 	 are obtained from (15a) and (15b). In the
Appendix we show that for 0 < ι′θ < 2, only positive values for w are allowed. In
that case the BN value of α is the maximal value, as it is in the univariate case.

For a generalization of the Watson restriction, we could assume that there is
one market whose idiosyncratic term is uncorrelated with the efficient price, that
is, by setting one element αi = 0. The interpretation of the Watson restriction is
that one market is designated as the central market. In some applications there is
a natural choice for the central market. For example, when studying the relation
between the NYSE and regional markets in the U.S., the NYSE would be the
central market. As another example, in an application with cross-listed stocks, the
home market is the candidate central market. Setting some arbitrary αi = 0 could
easily be inadmissable because it will violate the condition that 	 must be positive
semidefinite. Admissability must be checked on a case by case basis and will restrict
the potential normalizations of α. Imposing the Watson restriction αi = 0 on every
market leads to N − 1 over-identifying restrictions, which may be violated by the
data.

In many applications, microstructure theory does not suggest a Watson-type
normalization. An alternative identifying assumption is that 	 is diagonal. Un-
der that assumption the deviations from the efficient price, pit − p∗

t , will only be
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8 Journal of Financial Econometrics

correlated across markets because of their joint dependence on the innovation in
the efficient price rt . Diagonality of 	, of course, does not help identification in
the univariate model. The bivariate case (N = 2) is special, since the off-diagonal
element ω21 can be set to zero by a suitable choice of w in (15b) without imposing
any further over-identifying conditions. When N > 2, assuming 	 is diagonal does
put testable over-identifying restrictions on the data.

Diagonality of 	 is very different from diagonality of the reduced-form co-
variance matrix �. The latter is violated in any empirical application. With mi-
crostructure data, the typical covariances among price innovations are positive. In
the UC these positive covariances are modeled by their common dependence on
the efficient price using the coefficients β = ι + α. In the next section we analyze
how the assumption facilitates the interpretation of information shares.

2 INFORMATION SHARES

Information measures of price discovery summarize the relation between the
change in the efficient price and actual price changes. The most common measure
is due to Hasbrouck (1995), who defines information shares within a reduced-
form model. In the simplest case with only first-order dynamics, the VMA(1)
model (16) from the previous section can be written in the permanent-transitory
decomposition form (18), with rt = θ ′εt . Hasbrouck (1995) proposes the variance
decomposition

σ 2 = Var(rt) = θ ′�θ =
N∑

i=1

N∑

j=1

θiθ jσi j (23)

to define information shares for each dealer. If the shocks εi t would be mutually
uncorrelated, the information shares

ki = θ2
i σi i

σ 2 (24)

would measure the part of the variance of the innovation to the efficient price
that is due to the information in dealer i ’s quotes. When the covariances σi j are
not equal to zero, it is not clear how much of the covariance θiθ jσi j should be
attributed to dealers i and j . In empirical work the covariance terms are often
large. For large N the covariance terms could even dominate the contributions of
the diagonal elements. By varying the order of the variables in pt in alternative
Cholesky decompositions of �, it is possible to obtain an upper and a lower bound.

In this section we suggest a modification of this definition, which allocates the
covariance terms in a particular way. Instead of the reduced-form definition, we de-
fine the information shares directly within the structural unobserved components
model. From (9), price innovations in the UC model are given by

vt = ιrt + ut = (ι + α)rt + et = βrt + et , (25)
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JONG & SCHOTMAN | Price Discovery in Fragmented Markets 9

and have covariance matrix

E[vtv
′
t] = ϒ = σ 2ββ ′ + 	. (26)

As in Hasbrouck (1995), we consider the relation between the innovation in the
efficient price and the shocks to individual prices,

rt = γ ′vt + ηt , (27)

where ηt is the part of the innovation in the efficient price that is unrelated to
innovations in observed prices. In the UC, ηt will generally have a positive variance,
while in the reduced-form VMA, by construction, ηt = 0. The regression coefficients
γ follow as

γ = ϒ−1βσ 2. (28)

Next, analogous to the Hasbrouck (1995) definition, consider a variance decompo-
sition of rt ,

Var(rt) ≡ σ 2 = γ ′ϒγ + σ 2
η . (29)

Because σ 2
η is positive, not all variance can be attributed to innovations in observed

prices. The total fraction of the variance in the fundamental price innovation rt

explained by the vector of observed price innovations is

R2 = 1 − σ 2
η /σ 2 = γ ′ϒγ/σ 2 = γ ′β =

N∑

j=1

γ jβ j . (30)

As information shares we propose

IS j = γ jβ j . (31)

For an interpretation of this definition, recall that β is the regression coefficient of
the price innovations vt on the efficient price rt , while γ is the coefficient in the
reverse regression of rt on vt . The product of the elements of these vectors can be
interpreted as a partial R2, indicating how much of the variance of rt is explained
by each element of vt . These partial R2s do not add up to one, because in the UC
model some of the variation in the efficient price is uncorrelated with the observed
price innovations.

The information shares are not invariant with respect to the normalization of
α and 	. Different choices for w will lead to different information shares. Without
a credible choice of w the definition still contains some arbitrary allocation of
covariances. As a plausible identification we consider the assumption that 	 is
diagonal. In that case the only source of covariance between elements of vt is
through the common factor rt . With 	 diagonal, we can express the information
shares as in the following theorem (see the Appendix for proof).
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Theorem 1. Let information shares be defined by IS j = β jγ j . Assume 	 diagonal with
positive diagonal elements ω2

j . Then

IS j = β2
j /ω

2
j

1/σ 2 + ∑
i β2

i /ω2
i

. (32)

Information shares therefore depend on the ratio β j/ω j . The less the noise in market
j , the higher the information share. Similarly, the stronger the covariance between
prices in market j and the efficient price, the higher the information share.

Recall that β j = 1 + α j . When a diagonal 	 is close to the Watson restriction
with some central market having αi = 0, we expect that less informative satellite
markets have α j < 0, or have a high ω j . In other words, informationally less efficient
markets will be characterized by slow or noisy price adjustment.

To see the relation between this definition of the information share and
Hasbrouck’s, consider first the BN normalization. From (21) it follows that
β̃ = �θ/σ 2. This is also the highest possible value for β, because the BN nor-
malization gives the highest possible value for α. By substituting the value of 	̃

from (22), we find that

ϒ̃ = σ 2β̃β̃ ′ + 	̃ = �. (33)

Likewise, γ̃ = ϒ̃−1β̃ = θ . Hence, under the BN identification rule the information
shares are

ĨS j = γ̃ j β̃ j =
∑N

i=1 σi jθiθ j

σ 2 . (34)

By construction, these information shares add up to one. This is not surprising,
since the variance of the residual in (27), σ 2

η , is zero in this case. These information
shares are identical to Hasbrouck’s (1995) definition if � is diagonal. In the generic
case where � is not diagonal, this information share distributes the covariances
between markets in a particular way.

3 EXAMPLE

Hasbrouck (2002) considers a number of stylized examples to evaluate the eco-
nomic plausibility of alternative statistical price discovery measures. One of his
examples concerns a simple version of the Glosten and Harris (1988) model. There
are two markets, but all information is revealed in the first market. Prices are given
by

p1t = p∗
t + q1t ,

p2t = p∗
t−1 + q2t ,

p∗
t = p∗

t−1 + q1t , (35)
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JONG & SCHOTMAN | Price Discovery in Fragmented Markets 11

where q1t and q2t are uncorrelated shocks with unit variance. To formulate this
model in our notation, let rt = q1t , write

p2t = p∗
t + p∗

t−1 − p∗
t + q2t = p∗

t − rt + q2t ,

let e2t = q2t , and set e1t = 0. With this notation the dealer behavior can be written
in the form of (9) as

(
u1t

u2t

)
=

(
1

−1

)
rt +

(
e1t

e2t

)
, (36)

where the vector (e1t e2t) has covariance matrix

	 =
(

0 0
0 1

)
. (37)

From (36) it is immediate that σ 2 = 1 and α = (1 − 1). This is consistent with the
moment conditions (13):

α1 − α2 = E[�p2t�p1,t−1] − E[�p1t�p2,t−1] = 2. (38)

Given α, β follows as (2 0)′. The matrix 	 is diagonal in line with what we also
think is the most plausible identification. For the parameter γ , we first compute
the covariance matrix ϒ from (26):

ϒ = σ 2ββ ′ + 	 =
(

2
0

)
(2 0) +

(
0 0
0 1

)
=

(
4 0
0 1

)
. (39)

Therefore, using (28),

γ = ϒ−1βσ 2 =
(

1
4 0
0 1

) (
2
0

)
=

(
1
2
0

)
, (40)

and the information shares follow from (31):

(
IS1

IS2

)
=

(
2
0

)
�

(
1
2
0

)
=

(
1
0

)
, (41)

exactly as intended by the example. Market 1 contains all the information and the
information share IS1 reflects this.

This should be a good point to leave the example, were it not that α is not
uniquely identified from the data. Observationally equivalent representations arise
by translating α along the unit vector, and doing a compensating transformation
on 	. The set of equivalent models in this example is (see (15a))

(
u1t

u2t

)
=

(
1 − w

−1 − w

)
rt +

(
e1t

e2t

)
, (42)
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Table 1 Observationally equivalent structural models.

w α 	 β γ IS

0 1 0 0 2 1
2 1

−1 0 1 0 0 0
0.25 0.75 0.688 0.188 1.75 0.456 0.799

−1.25 0.188 0.813 −0.25 −0.155 0.039
3/5 0.40 1.440 0.240 1.40 0.200 0.280

−1.60 0.240 0.040 −0.60 −1.200 0.720

The table reports alternative observationally equivalent parameter configurations of the model:

pt = p∗
t + ut ,

ut = αrt + et ,

p∗
t = p∗

t−1 + rt ,

related to the stylized example in Section 3.

with covariance matrix (see (15b))

E[ete ′
t] = 	 =

(
3w − w2 w − w2

w − w2 1 − w − w2

)
. (43)

Hasbrouck’s structural representation obtains for w = 0. Alternative representa-
tions are admissible if 	 is positive semidefinite. From the determinant of 	 and
its diagonal elements, it follows that this restricts w to

0 ≤ w ≤ 3/5. (44)

The minimal value w = 0 generates the BN representation.
Table 1 reports the implications of three representations corresponding to three

different values of w. Results for the Hasbrouck identification (w = 0) have been
discussed before. For the other observationally equivalent models, the noise covari-
ance matrix 	 is not diagonal.6 The relation between w and the information shares
is far from linear.7 For most values of w, like w = 0.25 in Table 1, market 1 remains
dominant. The identification problem can, however, lead to a completely different
interpretation as shown in the last rows (w = 3/5). In this case the market-specific
shocks are not idiosyncratic at all, but perfectly correlated. Under these conditions
the partial R2s ISi = βiγi of course don’t make any sense. We don’t advocate the
use of information shares if it is believed that 	 can be so far from diagonality. A
credible identification is required, as otherwise observationally equivalent models
might produce radically opposing results.

6According to (43) the off-diagonal element of 	 will be zero of w = 0 or w = 1, but the latter is outside
the admissible range in (44).

7The exact formula is IS1 = (4 − 8w + 3w2)/(4 − 5w).
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4 HIGHER-ORDER MODELS

In practice, microstructure data show second-order, and sometimes even higher-
order, serial covariances. A natural way to model higher-order dynamics is by
adding lagged noise terms et− j to the deviations from the efficient price.8 Looking
at the simplest case, the specification for the dealer behavior becomes

ut = αrt + et + �et−1, (45)

with � an (N × N) matrix. The moment conditions become


0 = E[�pt�p′
t] = σ 2((ι + α)(ι + α)′ + αα′) + 	 + (� − I )	(� − I )′ + �	� ′,


1 = E[�pt�p′
t−1] = −σ 2α(ι + α)′ + (� − I )	 − �	(� − I )′, (46)


2 = E[�pt�p′
t−2] = −�	.

As this is the model we will use in the empirical part of the paper, we analyze this
specific case in a bit more detail. The additional parameter matrix � is just identified
from the second-order autocovariance matrix 
2. The random-walk variance is
still over-identified as in the first-order case from the long-run covariance matrix∑2

j=−2 
 j = σ 2ιι′. Identification of α is slightly more complicated than in the first-
order model. Consider the following combination of moments:

D(
) = 
′
1 − 
1 + 2(
′

2 − 
2) = σ 2(αι′ − ια′). (47)

This identifies α up to a translation along the unit vector. Like in the first-order
case, the full set of equivalent solutions for α can be characterized by

α = α̃ − wι, (48)

where w is an arbitrary scalar and α̃ is an initial admissible solution. As before,
not all values for w are allowed, however, since the implied value for 	 has to be
positive semidefinite. Given the other parameters, the noise covariance matrix 	

can be obtained from the moment equations; for example, using


′
1 + 
1 + 2(
′

2 + 
2) = −σ 2(αι′ + ια′ + 2αα′) − 	 − �	� ′

= −σ 2(αι′ + ια′ + 2αα′) − 	 − 
2	
−1
′

2.
(49)

Unlike the first-order case (14), these moment equations are nonlinear in 	 due to
the presence of 	−1. The identification rules for α of section 1 can also be applied
in this case. The Watson restriction (π ′α = 0) and a diagonal 	 will lead to full
identification. The definition of the information share in Equation (31) can then be
applied directly.

8An alternative way to model higher-order dynamics is by including lagged effects of the efficient price
in the transitory term. This imposes a particular structure on the serial correlation pattern, which may
be at odds with the data. We therefore do not pursue this idea further.
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The relation with the reduced form in the higher-order model is more compli-
cated than in the first-order model. The reduced form of the second-order model
can be written as a VMA(2) model,

�pt = εt + B1εt−1 + B2εt−2, (50)

with Var(ε) = �. Cointegration requires that the coefficient matrices add up to

C(1) ≡ I + B1 + B2 = ιθ ′. (51)

Working out the moments gives:


0 = E[�pt�p′
t] = � + B1�B ′

1 + B2�B ′
2,


1 = E[�pt�p′
t−1] = B1� + B2�B ′

2, (52)


2 = E[�pt�p′
t−2] = B2�.

Substituting these values in the expression for D(
) and using the cointegration
restriction (51) gives

D(
) = (I − B2)�θι′ − ιθ ′�(I − B2) = σ 2(αι′ − ια′). (53)

From this equality, the full set of admissible values for α can be written as

α = (I − B2)�θ − (w + 1)ι. (54)

The expression for 	 is complicated, however, due to the presence of 	−1 in (49).
Notice that in the first-order case (B2 = 0), the value w = 0 corresponds to the BN
value (β = ι + α = �θ ).

Adding further lags � j et− j does not alter anything in the identification of α.
With more lags, the model becomes increasingly more difficult to analyze, but α

remains easily connected to the asymmetry of the autocovariance structure. The
result is given in the form of a theorem (see the Appendix for proof).

Theorem 2. Let prices be generated by the unobserved components model (9) but with
dealer shocks,

ut = αrt +
M∑

j=0

� j et− j , (55)

where E[etrs] = 0 for all t and s. Then

M+1∑

j=−(M+1)


 j = σ 2ιι′ (56)

and

M+1∑

j=1

j(
′
j − 
 j ) = σ 2(αι′ − ια′). (57)
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From these moment equations, the parameters σ 2 and the set of admissible values
for α are easily found.

5 EMPIRICAL APPLICATIONS

We apply the unobserved components model to a set of Nasdaq dealer quotes,
and compare with the VECM results. We discuss two applications. For the first, we
consider midquotes of the five most active dealers in Intel for the six month period
February–July 1999. With these data we consider the importance of ECNs relative
to individual dealers in price discovery on Nasdaq. The second application uses
midquote data for Expedia originating from Nasdaq and NYSE (ARCA) for the
second half of 2007. For this data the basic question is about the information in
quotes originating outside the Nasdaq system.

The purpose of the applications is to compare the alternative specifications.
Does a UC model violate typical moments in high-frequency quote data? How
stable are price discovery measures given the limited identification of the structural
parameters? How reasonable is the over-identifying assumption of a diagonal
matrix for individual deviations from the efficient price?

5.1 Intel 1999

The sample contains quotes that are sampled at two-minute intervals for 123 con-
secutive trading days in 1999. Since Intel is a liquid stock, there are hardly any
missing values at this sampling frequency.9 The five top dealers are the two ECN’s
Island (ISLD) and Instinet (INCA) and the three wholesale dealers Spear, Leeds
& Kellogg Capital (SLKC); Mayer and Schweitzer (MASH); and Knight/Trimark
Securities (NITE). The total number of observations for all series is 24,108.

Sample covariances are estimated omitting the overnight returns. The con-
temporaneous covariance matrix and the first two lags are reported in Table 2.
Contemporaneous correlations among the quotes changes is only around 0.4.
Since cointegration implies that the long-run correlation must be equal to one,
enough dynamic structure remains despite the relatively low two minutes sam-
pling frequency. All first-order autocorrelations are firmly negative. Second-order
covariances are negligible, except for SLKC and NITE.

The variance of the random-walk component can be estimated from the long-
run covariance matrix:


̄ = 
0 +
L∑

i=1

(
i + 
′
i ) = σ 2ιι′. (58)

9At higher frequencies we do not observe quote updates for the less active dealers in many time periods.
Various ways to deal with these missings have been suggested; see, for example, Harris et al. (1995) and
DeJong, Mahieu, and Schotman (1998). For clarity in this empirical illustration of the parameterization
issues, we decided to keep the econometrics as simple as possible and work with data at the two-minute
frequency.
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Table 2 Data (auto-)covariances.

Dealer ISLD INCA SLKC MASH NITE

Lag 0 ISLD 5.37 0.54 0.38 0.40 0.28
(
0) INCA 2.36 3.50 0.50 0.48 0.37

SLKC 2.37 2.49 7.08 0.36 0.29
MASH 2.51 2.41 2.59 7.24 0.27
NITE 1.84 1.95 2.21 2.07 7.98

Lag 1 ISLD −1.31 0.08 0.02 0.02 0.01
(
1) INCA 0.22 −0.36 0.12 0.13 0.11

SLKC 0.64 0.48 −1.21 0.42 0.29
MASH 0.09 0.07 0.04 −2.06 −0.13
NITE 0.52 0.41 0.31 0.44 −1.75

Lag 2 ISLD −0.03 0.05 0.08 −0.01 0.01
(
2) INCA 0.02 −0.04 −0.03 0.02 −0.05

SLKC −0.11 −0.11 −0.44 −0.14 −0.14
MASH 0.04 0.02 0.02 −0.09 0.12
NITE 0.00 0.02 −0.02 −0.02 −0.58

Long run ISLD 2.70 1.01 0.94 0.94 0.80
(
̄) INCA 2.73 2.71 0.94 0.94 0.81

SLKC 2.99 2.95 3.79 0.87 0.75
MASH 2.64 2.65 2.90 2.93 0.79
NITE 2.39 2.44 2.65 2.48 3.32

Information ISLD 0.00 0.08 0.24 0.17 0.49
asymmetry INCA −0.08 0.00 0.21 −0.03 0.43
D(
) SLKC −0.24 −0.21 0.00 −0.14 0.27

MASH −0.17 0.03 0.14 0.00 0.28
NITE −0.49 −0.43 −0.27 −0.28 0.00

σ 2 2.54

The table reports the sample covariances (correlations) for the time series of quote changes of the five most
active dealers in Intel in the period February–July 1999. The entry on row i and column j for 
� refers
to the covariance E[�pit�p j,t−�]. The long-run covariance matrix is defined as 
̄ = 
0 + ∑2

i=1(
i + 
′
i ).

The dealer information matrix is defined as D(
) = ∑2
i=1 i(
′

i − 
i )/σ 2. The scaling factor σ 2 is a GMM
estimate from 
̄. Dealer acronyms are ISLD (Island), INCA (Instinet), SLKC (Spear, Leeds & Kellogg
Capital), MASH (Mayer and Schweitzer), and NITE (Knight/Trimark Securities).

It is clear from Table 2 that with L = 2 not all elements in 
̄ are the same, nor that
all correlations are equal to one. For the three wholesale dealers, and especially
SLKC, the diagonal elements are still larger than for the two ECNs. Given the large
number of observations, the differences are significant. Further lags must add some
negative autocorrelations for the three dealers. We did not obtain full equality of all
elements of 
̄ by adding a small number of lags. On the other hand, adding a few
more lags hardly affects the estimate of the random walk variance σ 2. We therefore
estimate all models with a maximum of second-order lags, with cointegration as a
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Table 3 Vector error correction.

Residual covariances (correlations) Info shares

Dealer θ ISLD INCA SLKC MASH NITE min max

ISLD 0.21 4.38 0.70 0.52 0.55 0.37 0.03 0.70
INCA 0.53 2.66 3.28 0.61 0.61 0.44 0.12 0.91
SLKC 0.10 2.64 2.66 5.82 0.47 0.31 0.01 0.52
MASH 0.09 2.71 2.60 2.67 5.55 0.35 0.01 0.51
NITE 0.04 2.01 2.04 2.12 2.15 6.61 0.01 0.26

σ 2 = 2.80

The table reports results obtained from the vector error correction model

�pt = c + Ast−1 + D�pt−1 + εt

with E[εtε
′
t] = �. The vector st contains the difference between the quotes of ISLD and each of the other

four dealers. Parameters are estimated by OLS. The table reports estimates of the long-run impact matrix
of the VECM,

C(1) = ιθ ′.

The “Info shares” are the minimum and maximum information shares for each of the dealers, estimated
using the methodology of Hasbrouck (1995). Residual correlations are in italics. The last entry in the
table is the variance of the random-walk component, σ 2 = θ ′�θ .

maintained hypothesis. Applying GMM to estimate σ 2 from the ten moments in 
̄

gives σ̂ 2 = 2.54 with a standard error of 0.06.
Implications for α can be obtained from the moment matrix

D(
) = 
′
1 − 
1 + 2(
′

2 − 
2) = σ 2(αι′ − ια′). (59)

Elements of D(
) scaled by σ 2 are reported in the last panel of Table 2. The sample
moments in the table closely resemble the structure implied by (59). It appears that
ISLD has the highest αi , whereas SLKC and NITE have relatively small αi .

For the formal analysis we first consider a reduced-form VECM, as this is the
most commonly estimated model for inference on price discovery. We estimated
the model with second-order dynamics,

�pt = c + Ast−1 + D�pt−1 + εt , (60)

where st is the vector of differences between the midquote of ISLD and each of
the other four dealers, A a (5 × 4) matrix of error correction parameters, and D
a (5 × 5) matrix. The most salient features of the VECM are reported in Table 3.
The estimates of the information shares confirm the results of Huang (2002) that
the ECNs dominate the price discovery on Nasdaq. Individual information shares
of either ECNs or regular dealers are, however, in extremely wide intervals. For
example, the lower and upper bound for ISLD are 3% and 70%, respectively.
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Table 4 Vector-moving average.

Residual covariances (correlations) Info shares

Dealer θ ISLD INCA SLKC MASH NITE min max

ISLD 0.25 4.31 0.71 0.55 0.59 0.46 0.07 0.75
INCA 0.49 2.66 3.23 0.63 0.64 0.53 0.14 0.90
SLKC 0.02 2.57 2.56 5.04 0.51 0.44 0.05 0.47
MASH 0.10 2.79 2.66 2.64 5.29 0.42 0.05 0.56
NITE 0.08 2.25 2.25 2.31 2.25 5.54 0.05 0.39

σ 2 = 2.64 J (20) = 103.21

The table reports results obtained from the vector-moving average model

�pt = B2εt−2 + B1εt−1 + εt

with E[εtε
′
t] = � and under the cointegration restriction

C(1) = I + B1 + B2 = ιθ ′.

Parameters are estimated by GMM using the moment conditions for 
0, 
1, and 
2. The “Info shares”
are the minimum and maximum information shares for each of the dealers. Residual correlations are in
italics. The last part of the table shows the variance of the random-walk component, σ 2 = θ ′�θ , and the
criterion value of the GMM estimator known as Hansen’s J-statistic.

The wide intervals are caused by the strong contemporaneous correlations of the
errors.10

The reduced form that is more closely related to the unobserved components
model is the VMA. With second-order dynamics we estimate the model:

�pt = c + εt + (ιθ ′ − I − B)εt−1 + Bεt−2. (61)

The 45 parameters in θ , �, and B are estimated by GMM using the 65 moment
conditions for 
0, 
1, and 
2. Table 4 shows estimation results.11 Hansen’s J-statistic
rejects the 20 over-identifying moment conditions that result from the cointegration
restriction C(1) = ιθ ′. The empirical violation of this restriction in the model with
second-order lags was already evident in Table 2. Although the VECM and VMA
are not nested, it seems that the VMA fits the data better: all diagonal elements of
� and also the determinant are smaller for the VMA.

Implications for the information shares are similar to the VECM results. All
of the minimum, maximum, and θ are close to the VECM estimates. The high
information share of INCA is mainly caused by its low residual variance.

10The wide intervals for the information shares are not an artifact of the sampling frequency: Huang (2002)
finds similar wide intervals for Intel at the one-minute frequency. Huang (2002) uses slightly different
data though, since he aggregates individual dealers into categories.

11The VMA representation in the table uses the invertible solution for the moment equations with all
characteristic roots inside the unit circle except for the four unit roots imposed by cointegration.
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Table 5 Unobserved components model.

Error covariances 	 (correlations)

Dealer α ISLD INCA SLKC MASH NITE IS

A. “Watson” representation:
∑

αi = 0
ISLD 0.074 1.160 −0.47 −0.06 −0.13 −0.16 0.262
INCA 0.027 −0.320 0.400 −0.05 −0.20 −0.17 0.490
SLKC −0.008 −0.086 −0.049 2.088 0.05 0.03 0.049
MASH 0.024 −0.221 −0.191 0.115 2.401 −0.07 0.099
NITE −0.116 −0.318 −0.194 0.073 −0.208 3.431 0.065

R2 = 0.965 σ 2 = 2.64 J (20) = 103.21

B. Approximately diagonal 	

ISLD 0.003 1.363 −0.14 −0.04 −0.01 −0.07 0.251
INCA −0.044 −0.130 0.589 0.14 −0.01 −0.02 0.461
SLKC −0.079 0.074 0.185 2.782 0.10 0.09 0.030
MASH −0.047 −0.027 −0.011 0.260 2.587 −0.02 0.096
NITE −0.187 −0.155 −0.030 0.281 −0.055 3.568 0.061

R2 = 0.899 σ 2 = 2.64 J (20) = 103.21

C. Diagonal covariance matrix
ISLD 0.000 1.517 0.187
INCA −0.008 0.626 0.446
SLKC 0.087 2.166 0.155
MASH −0.032 2.489 0.123
NITE −0.144 3.591 0.058

R2 = 0.967 σ 2 = 2.54 J (29) = 162.03

The table reports results for the unobserved components model:

pt = ιp∗
t + ut ,

p∗
t = p∗

t−1 + rt ,

ut = αrt + �et−1 + et .

Panels A and B are reparameterizations of the VMA in Table 4. Panel A is the “Watson” representation
with

∑
i αi = 0. Panel B reports the observationally equivalent representation with the lowest maximum

correlation in 	 = E[ete ′
t]. In panel C diagonality of 	 is imposed. Entries report GMM estimates for

σ 2, α, 	, and the GMM criterion function. The IS column gives the information shares as defined in
Equation (31). R2 is the sum of the individual information shares, and equals the fraction of variance of
the efficient price innovation explained by the observed prices.

By reparameterizing the VMA we obtain alternative observationally equiva-
lent unobserved components representations with second-order dynamics as in
(45). In Table 5 we report results for two of these equivalent models. The first is a
model in “Watson” form (

∑
i αi = 0). In the second model, we have set w so that

the maximum absolute correlation between the dealer noise terms eit is minimal.
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The latter model is the representation of the UC for which the noise covariance
matrix is closest to diagonality. Since the models are observationally equivalent to
the reduced-form VMA, they have the same GMM J-statistic.

The information shares from these structural models are within the minimum–
maximum range of the reduced-form models. The two ECNs dominate with the
information share of INCA being almost double that of ISLD. The dealer that
contributes least to the price discovery process is NITE. It is the only dealer with a
significantly different αi .

In addition, Table 5 presents results for the over-identified model where di-
agonality of 	 has been imposed. Diagonality appears to be a good modeling
assumption. Considering the large sample size, the restriction is only marginally
rejected against the VMA (and its equivalent UC representations). It seems sur-
prising that diagonality provides such a good fit to the data, since the correla-
tion between the shocks of ISLD and INCA was −0.47 in the “Watson” model.
Note, however, that shifting α in the direction of ι induces a compensating
change in the structure of 	. The results in panel B show that we can shift α

such that 	 becomes almost diagonal with the maximum absolute correlation
only 0.14.

The results for the “diagonal” model differ from the others mostly with regard
to SLKC. In the diagonal model it has the highest α of all dealers. That is a somewhat
surprising result, since from the matrix D(
) in Table 2 we have seen that the raw
covariances implied a low α relative to ISLD. The explanation is that the GMM
weighting function also puts weight on fitting the total variance in 
0, for which
it needs a much higher value of α. In the parsimonious diagonal model there are
not enough other parameters to ease the tension between fitting the asymmetry in
the lagged covariances between SLKC and other dealers and fitting the variance
of SLKC quote updates.

Despite various possibilities for a more detailed modeling of these quote se-
ries, the main results seem robust across specifications. INCA is the most infor-
mative source for price discovery, followed by the other network Island (ISLD).
The unobserved components model provides plausible point estimates of the
information shares that are more informative than the VECM upper and lower
bounds.

5.2 Expedia 2007

Data for our second application consist of midquotes for Expedia sampled at the
one-minute frequency for the period July–December 2007. Quotes are taken from
the TAQ database and split in three series depending on the origin of the quote.
We distinguish between quotes from the Nasdaq and the NASD (TAQ codes Q,
T, or D), the NYSE and NYSE-ARCA (TAQ codes N and P) and all other origins,
which are mainly the NSX (TAQ code C) and the CBOE (TAQ codes I and W)
exchanges. The overall fraction of quotes issued by these three groups is around
45% for NASD, 20% for NYSE and the remaining 35% for the other markets. It
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Table 6 Data (auto-)covariances expedia 2007.

Dealer NYSE NASD REST

Lag 0 NYSE 0.938 0.82 0.90
(
0) NASD 0.888 1.261 0.77

REST 0.890 0.884 1.035

Lag 1 NYSE 0.012 0.031 0.038
(
1) NASD 0.042 −0.149 0.046

REST 0.041 0.039 −0.026

Lag 2 NYSE 0.006 0.007 0.013
(
2) NASD 0.015 0.013 0.015

REST 0.003 0.002 −0.001

Long run NYSE 0.975 1.00 1.00
(
̄) NASD 0.984 0.987 1.00

REST 0.985 0.985 0.981

Information NYSE 0 0.027 −0.016
asymmetry NASD −0.027 0 −0.032

D(
) REST 0.016 0.032 0
σ 2 0.984

The table reports the sample covariances (correlations) for the time series of quote changes of the
three alternative quote originations for Expedia in the period July–December 2007. The entry in row
i , column j for 
� refers to the covariance E[�pit�p j,t−�]. The long-run covariance matrix is defined
as 
̄ = 
0 + ∑2

i=1(
i + 
′
i ). The dealer information matrix is defined as D(
) = ∑2

i=1 i(
′
i − 
i )/σ 2.

The long-run variance of the efficient price is a GMM estimate from 
̄. Market acronyms are NYSE
(ARCA, NYSE), NASD (Nasdaq), and REST (all other).

is likely that most of the quotes in the third group originate from ECNs, who in
recent years often report their trades through one of the regional exchanges.12

Tables 6–9 have the same structure as the previous Tables 2–5. From the data
moments in Table 6, we see that contemporaneous correlations are much higher
than for the data on individual dealers. This is so despite the higher sampling
frequency (one-minute) than in the previous multiple dealer example. The coin-
tegration restrictions in the long-run covariance matrix already hold very closely
after adding two lags. Most interesting are the asymmetry measures, which indi-
cate that NASD has the lowest α parameter and is therefore likely to be the least
informative originator of quotes.

Tables 7 and 8 contain the estimates of the reduced-form VECM and VMA
models. Consistent with the low value of αNASD in the data moments, both models
show very low estimates of θNASD indicating that shocks to NASD quotes do not
contribute much to the innovation in the efficient price. Since contemporaneous

12See Goldstein et al. (2008), who study the importance of different trading venues for price discovery of
Nasdaq-listed stocks. Their study looks at a variety of measures for 100 different stocks in the second
quarter of 2003.
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Table 7 Vector error correction expedia 2007.

Residual cov (corr) Info shares

Dealer θ NYSE NASD REST min max

NYSE 0.51 1.00 0.90 0.94 0.024 0.974
NASD 0.05 0.96 1.15 0.87 0.001 0.824
REST 0.44 0.96 0.95 1.05 0.024 0.964

σ 2 = 1.00

The table reports results obtained from the vector error correction model

�pt = c + Ast−1 + D�pt−1 + εt

with E[εtε
′
t] = �. The vector st contains the difference between the quotes of NYSE and both other

dealers. Parameters are estimated by OLS. The table reports estimates of the long-run impact matrix of
the VECM,

C(1) = ιθ ′.

The “Info shares” are the minimum and maximum information shares (percentage) for each of the
dealers, estimated using the methodology of Hasbrouck (1995). Residual correlations are in italics. The
last entry in the table is the variance of the random-walk component, σ 2 = θ ′�θ .

Table 8 Vector-moving average expedia 2007.

Residual cov (corr) Info shares

Dealer θ NYSE NASD REST min max

NYSE 0.69 0.93 0.90 0.94 0.04 0.99
NASD 0.05 0.90 1.08 0.87 0.00 0.82
REST 0.30 0.90 0.90 0.99 0.01 0.95

σ 2 = 0.966 J (20) = 6.91

The table reports results obtained from the vector moving average model

�pt = B2εt−2 + B1εt−1 + εt

with E[εtε
′
t] = � and under the cointegration restriction

C(1) = I + B1 + B2 = ιθ ′.

Parameters are estimated by GMM using the moment conditions for 
0, 
1, and 
2. The “Info shares”are
the minimum and maximum information shares for each of the dealers. Residual correlations are in
italics. The last part of the table shows the variance of the random-walk component, σ 2 = θ ′�θ , and the
criterion value of the GMM estimator known as Hansen’s J-statistic.

correlations among the shocks are high, alternative Cholesky factorizations lead
to very wide bands for the price discovery measures. In all cases the estimates
are completely uninformative with lower bounds close to zero and upper bound
approximately one.
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Table 9 Unobserved components model.

Noise cov/corr 	

Dealer α NYSE NASD REST IS

A. “Maximum” representation max
∑

αi

NYSE −0.055 0.011 −0.44 −0.51 0.685
NASD −0.077 −0.019 0.156 −0.10 0.110
REST −0.044 −0.014 −0.010 0.067 0.205

R2 = 0.997 σ 2 = 0.98 J (6) = 6.913

B. Approximately diagonal 	

NYSE −0.060 0.027 0.09 −0.09 0.670
NASD −0.082 0.006 0.199 0.04 0.110
REST −0.049 −0.004 0.004 0.074 0.205

R2 = 0.980 σ 2 = 0.98 J (6) = 6.913

C. Diagonal covariance matrix
NYSE −0.106 0.027 0.670
NASD −0.126 0.186 0.095
REST 0.098 0.080 0.235

R2 = 0.978 σ 2 = 1.00 J (8) = 7.887

The table reports results for the unobserved components model:

pt = ιp∗
t + ut ,

p∗
t = p∗

t−1 + rt ,

ut = αrt + �et−1 + et .

Panels A and B are reparameterizations of the VMA in Table 8. Panel A is the representation for which∑
i αi is at the maximum admissible value. In panel B, diagonality of 	 is imposed. Entries report

GMM estimates for σ 2, α, 	, and the GMM criterion function. The IS column gives the information
shares as defined in Equation (31). R2 is the sum of the individual information shares, and equals the
fraction of variance of the efficient price innovation explained by the observed prices.

The reduced-form VMA model is equivalent to a range of specifications for
the unobserved components model with different values for

∑
i αi . The Watson

representation is not in this equivalence set. The equivalent UC model with the
largest possible

∑
i αi has negative α for all quote origins and

∑
i αi = −0.17.

Even with the large number of 45,356 observations, the restriction of a diagonal
	 cannot be rejected. Information shares for all equivalent UC models are plotted
in Figure 1. From the figure we conclude that all representations, which differ by
their identifying restriction on

∑
i αi shown on the horizontal axis, lead to almost

identical estimates of the information shares. What is analytically a problem of
under-identification, is empirically a negligible effect. There is only a small range of
admissible values for

∑
i αi , and the different values do not affect the economically
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Figure 1 Identification and information shares. The figure shows the information shares for
alternative, observationally equivalent, estimates of the structural parameters of the unobserved
components model for the EXPEDIA data. Each point in the figure has been obtained by estimating
the model for a different value of

∑
αi , shown on the horizontal axis. All estimates achieve the

same value of the GMM criterion.

interesting parameters related to the informativeness of the different quote series
for the price discovery process.

6 CONCLUSION

In this paper we proposed an Unobserved Components model for price discovery
in fragmented markets. The model decomposes the observed prices in an underly-
ing common efficient price and market-specific transitory components. We show
how this model is related to the usual VAR or VECM models for price discovery,
and argue that the unobserved components model is a natural and parsimonious
way of modeling price discovery. The parameters in the unobserved components
model have natural interpretations as the variance of the efficient price, variances,
and covariances of the transitory terms, and correlations between transitory terms
and the efficient price. Because of this structure, it is easy to impose economically
interesting or plausible restrictions on the model; for example, diagonality of the
transitory noise covariance matrix. Moreover, the dynamic structure (lag length)
of the model can be easily adapted to the serial correlation pattern observed in the
data.

We also propose a new measure for the contribution to price discovery based
on a permanent/transitory decomposition of the error terms instead of the usual
Cholesky decomposition. This measure is based on the covariance between the
transitory components and the efficient price.
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Our empirical results using Nasdaq quotes show that the approach leads to
meaningful and informative estimates of information shares. We conclude that
the key parameters of interest can be estimated from a parsimonious unobserved
components model. These parsimonious models could prove useful for applica-
tions on smaller data sets; for example, around specific events such as corporate
announcements.

APPENDIX: PROOFS

BN Representation Has Maximum α

We prove the assertion on section 1.2 that the BN normalization of α is the highest
possible value in the random walk plus noise UC model. Substituting the BN
expressions (21) and (22) in the solution set for 	, we find

	 = � − �θθ ′�/σ 2 + w(ιθ ′� + �θι′) − w(w + 1)σ 2ιι′. (A1)

We now show that this implies that only positive values for w are allowed. First,
pre- and post-multiply the expression for 	 by θ and use θ ′�θ = σ 2 to obtain

θ ′	θ = 2wσ 2� − w(w + 1)σ 2�2, (A2)

where � = ι′θ is the sum of elements of θ . The right-hand side of this equation is
a quadratic function of w with roots w1 = 0 and

w2 = 2
�

− 1. (A3)

As long as 0 < � < 2, w2 is positive and θ ′	θ is positive for values 0 < w < w2.
Negative values for w are not allowed, like too high positive values (too low values
of α). The condition 0 < � < 2 seems plausible. Individual elements of θ will likely
be positive if innovations to prices are positively correlated with an innovation in
the efficient price. Furthermore, consider the time-series process for qt = �−1θ ′ pt ,
a weighted average of the prices with positive weights,

�qt = �−1θ ′εt − �−1θ ′(I − ιθ ′)εt−1, (A4)

which can be written as

�qt = et − (1 − �)et−1, (A5)

with et = �−1θ ′εt . An MA coefficient 1 − � between 0 and 1 seems reasonable for
stationary microstructure data with negative first-order serial correlation. If � = 1,
then qt is a weighted average of individual prices that follows a random walk,
equal to the efficient price p∗

t . In the empirical applications we always find that
0 < � < 1, and usually � close to one.
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Proof of Theorem 1

Use the matrix inversion lemma

ϒ−1 = 	−1 − σ 2

1 + σ 2(β ′	−1β)
	−1ββ ′	−1

to compute

γ = ϒ−1βσ 2 = σ 2

1 + σ 2(β ′	−1β)
	−1β,

and thus

β jγ j = σ 2

1 + σ 2(β ′	−1β)
β j (	−1β) j ,

which can be rewritten in the form given in the theorem.

Proof of Theorem 2

The representation for the price change is

�pt = (ι + α)rt − αrt−1 + �0et +
M∑

i=1

(�i − �i−1)et−i − �Met−M−1. (A6)

The identification of σ 2 in (56) is a general result, which follows directly from
substituting the moment equations. For the second result, we start by analyzing
the covariance structure of the series �0et + ∑M

j=1(� j − � j−1)et− j − �Met−M−1. The
autocovariances are


̃M+1 = −�M� ′
0,


̃M = −
M∑

i=M−1

�i�
′
i−M+1,


̃ j = (� j − � j−1)� ′
0 +

M∑

i= j+1

(�i − �i−1)(�i− j − �i− j−1)′ − �M(�M− j+1 − �M− j )′

= −
M∑

i= j−1

�i�
′
i− j+1 + 2

M∑

i= j

�i�
′
i− j −

M∑

i= j+1

�i�
′
i− j−1 1 < j < M. (A7)

Summing the elements in (A7) gives

M+1∑

j=1

j 
̃ j = −
M∑

i=0

�i�
′
i , (A8)

since all terms of the form
∑M

i= j �i�
′
i− j cancel because the coefficients (−( j + 1) +

2 j − ( j − 1)) are always zero. Putting the efficient price changes (ι + α)rt − αrt−1
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back in, the same sum of the moments of �pt follows as

M+1∑

j=1

j
 j = −σ 2α(ι + α)′ −
M∑

i=0

�i�
′
i . (A9)

Subtracting the transpose of this matrix, all symmetric terms cancel and we are left
with the result

M+1∑

j=1

j(
′
j − 
 j ) = σ 2(αι′ − ια′). (A10)

Received September 4, 2007; revised March 27, 2008; accepted July 31, 2009.
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