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Abstract

We introduce the concept of a TUU-game, a transferable utility game with uncertainty. In a TUU-game
there is uncertainty regarding the payoffs of coalitions. One out of a finite number of states of nature
materializes and conditional on the state, the players are involved in a particular transferable utility game.
We consider the case without ex ante commitment possibilities and propose the Weak Sequential Core as
a solution concept. We characterize the Weak Sequential Core and show that it is non-empty if all ex post
TU-games are convex.
© 2011 Elsevier Inc. All rights reserved.

JEL classification: C71; C73
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1. Introduction

The vast majority of cooperative game theory has focused on games with deterministic pay-
offs. Nevertheless, uncertainty plays an inevitable role in most surplus sharing problems. In this
paper we introduce transferable utility games with uncertainty, called TUU-games. A TUU-
game consists of two time periods, 0 and 1. Period 0 is a time period before the resolution of
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uncertainty. In period 1 one out of a finite number of states of nature materializes and condi-
tional on the state, the players are involved in a particular transferable utility game. An allocation
therefore specifies a payoff to each player conditional on each possible state of nature. A utility
function is then used to assign a utility level to each profile of state-contingent payoffs.

This new set-up provides a more general treatment of uncertainty than the approach that has
appeared in the literature so far. Granot [5] introduced a cooperative game where the values of
the coalitions are random variables with given distribution functions, and players are risk-neutral.
This treatment is less complete since it specifies only the marginal distribution of the worths of
coalitions, whereas our approach allows for the complete specification of the distribution, im-
plying that for instance correlation between the worths of several coalitions can be incorporated.
Suijs and Borm [13,14] no longer assume risk neutrality, but keep the specification where only
marginal distributions of worths are given. Bossert et al. [2] consider a pair of TU-games, one of
which will be the true game. They do not use utility functions but perform a worst-case analysis.
Closest to our set-up is Predtetchinski [8], where the non-transferable utility case is studied in an
infinite horizon setting. His approach is similar to ours in the sense that the game to be played is
determined by the particular realization of the state of nature.

The introduction of uncertainty into cooperative games raises many new and interesting is-
sues. When players can make state-contingent agreements before the resolution of uncertainty,
i.e. at the ex ante stage, period 0, the situation boils down to a non-transferable utility game, and
we can apply for instance the classical concept of the Core to determine allocations of payoffs
that are stable.

We, on the contrary, are interested in the case where no binding agreements are possible before
the state of nature is known, but where players have the option to discuss agreements in period 0.
Lacking the possibility to make binding agreements concerning the ex post stage, period 1, such
agreements have to be self-enforcing. Our motivation for period 0 is thereby similar to the one
underlying the notion of Coalition-Proof Nash equilibrium, where players discuss the strategies
they are going to use, but cannot make binding commitments, and their choices have to be self-
enforcing. After the resolution of uncertainty in period 1, players know the TU-game that they
play and can make binding commitments as is usual in cooperative game theory.

A consequence of the absence of binding agreements in period 0 is that many ex ante desirable
transfers of payoffs across states are not feasible. Indeed, in the absence of binding agreements
in period 0, only allocations in the Core of the transferable utility game that results after the state
of nature is known, are self-enforcing.

Throughout the paper we assume symmetric information. There is also a rather extensive liter-
ature on cooperation in economies with private information, where usually a third stage between
the ex ante and ex post stages is distinguished, namely an interim stage in which the agents
learn their private information. See for instance [15] for a study of the core in this framework. In
these models, however, subject to incentive compatibility constraints, a complete contracting en-
vironment results; for the special case of symmetric information one is lead to the classical core.
The study of asymmetric information issues in an incomplete contracting framework remains an
interesting subject for further research.

We are interested in the appropriate definition of the Core in a TUU-game. In this setting coali-
tions are allowed to form in both periods. Stability requires that a suggested allocation cannot be
blocked by any coalition at any period, i.e. both before and after the resolution of uncertainty. We
concentrate on agreements which are self-enforcing in the sense that a coalition can only deviate
from a given allocation if no sub-coalition ever has a credible counter-deviation. Ray [10] shows
that in a static environment the set of deviations coincides with the set of credible deviations.
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This is no longer true in our setting, and leads to the solution concept of the Weak Sequential
Core.

The Weak Sequential Core was introduced in [7] for finite deterministic sequences of TU-
games, and it was defined for two-period exchange economies with incomplete markets in [9]. In
[7] the Weak Sequential Core was defined as the set of feasible payoff allocations for the grand
coalition, from which no coalition ever has a credible deviation. In [6] it is demonstrated that the
definition of credibility in [7] has to be adapted in order to show that the Weak Sequential Core
has a nice characterization in terms of the cores of appropriately defined subgames. In [9] this
characterization was used as the definition of the Weak Sequential Core in a two-period exchange
economy; i.e. the issue of the credibility of deviations is neglected there.

We extend the notion of credible deviation of [6] to TUU-games and show that an allocation
belongs to the Weak Sequential Core only if conditional on the state of nature it belongs to the
Core of the related ex post TU-game. This result follows from the absence of credible deviations
in period 1. The absence of credible deviations in period 0 is then used to show that an allocation
belongs to the Weak Sequential Core if moreover there is no coalition in period 0 that can propose
state-contingent Core elements of the ex post games restricted to that coalition, which gives each
of its members higher expected utility. In this way we obtain a characterization of the Weak
Sequential Core. This characterization is in the spirit of the one proposed by [7] and later proved
properly by [6], extended to the case with uncertainty.

A problem of the Weak Sequential Core concept is that the existing literature has failed to pro-
vide a general non-emptiness result, whereas moreover both Kranich et al. [7] and Predtetchinski
et al. [9] give examples where the Weak Sequential Core is empty. We provide a general result on
the non-emptiness of the Weak Sequential Core of TUU-games. We show that if all the ex post
TU-games are convex, then the Weak Sequential Core is non-empty. This result does not impose
any assumptions on the utility functions of the players beyond continuity and state-separability.
We also provide examples to show that the convexity condition cannot be weakened to permuta-
tional convexity, not even when the permutation is the same for all ex post TU-games, nor can it
be weakened to exactness.

The outline of the paper is as follows. We specify the model in Section 2 and give the formal
definition of the Weak Sequential Core in Section 3, followed by its characterization in Sec-
tion 4. We show the non-emptiness result in Section 5 and present the examples showing that
permutational convexity or exactness are not sufficient for non-emptiness. Section 6 concludes.

2. Preliminaries

Consider a game with two time periods, t ∈ T = {0,1}. Period 0 corresponds to an ex ante
stage before the resolution of uncertainty. In period 1 one state s out of a finite set of states of
nature {1, . . . , S} occurs. Since no confusion can arise, we also denote this set by S. We define
the state of nature for period 0 as state 0, so the set of all states is S′ = {0} ∪ S. In period 1 the
players are involved in a cooperative game with transferable utility, or briefly TU-game, where
the game itself is allowed to be state-dependent.

The TU-game Γs played in state s ∈ S is a pair (N,vs), where N = {1,2, . . . , n} is the set
of players and vs : 2N → R is a characteristic function which assigns to each coalition C ⊂ N

its worth vs(C), with the convention that vs(∅) = 0. The collection of non-empty subsets of N

is denoted by N , so N = 2N \ {∅}. Player i ∈ N evaluates his payoffs by a utility function ui :
RS → R, which assigns to every profile of payoffs xi = (xi

1, . . . , x
i
S) ∈ RS a utility level ui(xi).

The utility function is assumed to be continuous and state-separable, i.e. ui(xi) = ∑
ui (xi),
s∈S s s
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where ui
s(x

i
s) is monotonically increasing. Von Neumann–Morgenstern utility functions are a

prominent example of utility functions satisfying these assumptions.
A TU-game with uncertainty is defined as follows.

Definition 2.1. A TU-game with uncertainty (TUU-game) Γ is a tuple (N,S, v,u) where
v = (v1, . . . , vS) are state-dependent characteristic functions and u = (u1, . . . , un) are utility
functions.

Note that there are no payoffs in state 0. State 0 is merely introduced as a point in time when
the players face the uncertainty in the future and may decide to agree upon future state-contingent
payoff allocations. Payoffs in state 0 could be incorporated into our model but our main interest
is to get insight into the effect of future uncertainty on the stability of payoff allocations.

Another observation is that when the cardinality of S is one, the concept of a TUU-game col-
lapses with the one of a TU-game. In the absence of uncertainty, all monotonic transformations
of utility functions are equivalent, and it is without loss of generality to take ui(xi) = xi . Our
interest is obviously in the cases with non-degenerate uncertainty.

The central question in a TUU-game is how the worth vs(N) of the grand coalition is
distributed among its members in every state s ∈ S. A distribution of worth, represented
by a matrix x = (x1, . . . , xn) ∈ RS×N, is called an allocation. The state-s component xs =
(x1

s , . . . , xn
s ) ∈ RN of an allocation is referred to as the allocation in state s ∈ S. The total worth

obtained by coalition C in state s is xs(C) = ∑
i∈C xi

s . An allocation for a coalition C is a matrix
xC = (xi)i∈C ∈ RS×C, with a state-s component xC

s ∈ RC . The restriction of a TUU-game Γ to
coalition C is a TUU-game itself and is denoted by (Γ,C).

3. The Weak Sequential Core

We study which allocations in the game Γ are stable. In general, x̄ is stable if there is no state
s′ ∈ S′ and no coalition C ⊂ N which has a profitable deviation from x̄ at state s′. There are var-
ious ways in which the notion of profitable deviation might be formulated. Here we concentrate
on the Weak Sequential Core, introduced in [7] for finite deterministic sequences of TU-games
and in [9] for two-period exchange economies with incomplete markets. Here we define the Weak
Sequential Core for TUU-games.

When the classical definition of the Core [4] is adapted to situations with time and uncertainty,
it is typically assumed that agents can fully commit to any state-contingent allocation. In this case
one would define the set of feasible allocations for a coalition C ⊂ N as

XC = {
xC ∈ RS×C

∣∣ xC(C) � v(C)
}
,

resulting in the set of utilities for coalition C given by

V (C) = {
ūC ∈ RC

∣∣ ∃xC ∈ XC, ∀i ∈ C, ūi = ui
(
xi

)}
,

thereby obtaining an NTU-game. Full commitment may be a strong and unrealistic assumption in
the presence of time and uncertainty. Once the state of nature is known, there are typically play-
ers which have no incentives to stick to the previously arranged allocation of payoffs. Here we
analyze the case with absence of commitments and look for agreements which are self-enforcing.

First we define what allocations, and thereby deviations, are feasible for coalitions at differ-
ent states, then we formalize the notion of credible deviations and finally we define the Weak
Sequential Core of a TUU-game. We start with feasibility at future states.
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Definition 3.1. Fix some allocation x̄. The allocation xC is feasible for coalition C at state s ∈ S

given x̄ if

xC−s = x̄C−s ,

xC
s (C) � vs(C).

The first condition requires that the members of a coalition take allocations outside state s

as given. Since utility functions are assumed to be state-separable, this assumption is harmless.
According to the second condition, in state s the members of a coalition can redistribute at most
their worth.

We turn next to feasibility as state 0.

Definition 3.2. The allocation xC is feasible for a coalition C at state 0 if

xC(C) � v(C).

Note that feasibility at state 0 requires that the allocation must be feasible for coalition C in
every state; it requires

∑
i∈C xi

s � vs(C) to hold for all states s in period 1.
We continue by defining deviations as feasible allocations that improve the utility of every

coalition member.

Definition 3.3. Fix some allocation x̄. A coalition C can deviate from x̄ at state s′ ∈ S′ if there
exists a feasible allocation xC for C at s′ given x̄ such that

ui
(
xi

)
> ui

(
x̄i

)
, for all i ∈ C.

The allocation xC in Definition 3.3 is referred to as a deviation. Definition 3.3 can be extended
in an obvious way to define deviations from an allocation xC by a sub-coalition D of C.

We show in the following example that deviations are not necessarily self-enforcing.

Example 3.4. Consider a TUU-game with two players and with two states in period 1 with
equal probability of occurrence. The players are assumed to be strictly risk-averse expected util-
ity maximizers. Let the state-dependent characteristic function be the following: v1({1,2}) =
v2({1,2}) = 1, v1({1}) = v2({2}) = 1, v1({2}) = v2({1}) = 0. The characteristic function has the
feature that player i does not contribute to the surplus at state s = −i.

Let the allocation

x̄ = (
x̄1, x̄2) =

(
1 0
0 1

)
be given. Now consider the allocation

x = (
x1, x2) =

(
1
2

1
2

1
2

1
2

)
,

which is feasible for the grand coalition in state 0. Since both players are risk-averse, x is a
deviation from x̄ at state 0 by coalition {1,2}.

The allocation x is not self-enforcing though, since after the resolution of uncertainty it will
always be blocked by a singleton coalition; at state 1 player 1 can block x1

1 = 1
2 by x̂1

1 = v1({1}) =
1 and at state 2 player 2 can block x2 = 1 by x̂2 = v2({2}) = 1.
2 2 2
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Since deviations should be self-enforcing, we introduce the notion of credible deviations. In
defining credibility, we follow the approach developed in [10] for the static case. Ray [10] shows
that in a static environment the set of deviations coincides with the set of credible deviations.
This is no longer true in our setting.

Credible deviations are defined recursively and by backwards induction. At any future state,
any deviation by a singleton coalition is credible. A two-player coalition has a credible deviation
at a future state if there is no singleton sub-coalition with a credible counter-deviation at that
state. A credible deviation at a future state for an arbitrary coalition is then defined by recursion.
More formally, a recursive definition of a credible deviation at state s ∈ S by a coalition C is as
follows.

Definition 3.5. Fix some allocation x̄. Any deviation xC from x̄ at state s ∈ S by a singleton
coalition is credible. Suppose credible deviations have been defined for each coalition of size k.

Let C be a coalition of size k + 1. A deviation xC from x̄ at state s by coalition C is credible if
there is no sub-coalition D � C such that D has a credible deviation from xC at state s.

At state 0, again, any deviation by a singleton coalition is credible. A two-player coalition
has a credible deviation at state 0 if there is no singleton sub-coalition with a credible counter-
deviation at any state, current or future. A credible deviation at state 0 by an arbitrary coalition
is then defined by recursion. More formally, we have the following definition.

Definition 3.6. Fix some allocation x̄. Any deviation xC from x̄ at state 0 by a singleton coalition
is credible. Suppose credible deviations have been defined for each coalition of size k. Let C be
a coalition of size k + 1. A deviation xC from x̄ at state 0 by coalition C is credible if there is no
sub-coalition D � C and state s′ ∈ S′ such that D has a credible deviation from xC at s′.

Definition 3.7. The Weak Sequential Core WSC(Γ ) of the game Γ is the set of feasible alloca-
tions x̄ for the grand coalition from which no coalition ever has a credible deviation.

Our definition of the Weak Sequential Core is different from the one in [7] and the one in [9].
Kranich et al. [7] do not require the counter-deviation by a sub-coalition to be credible, which
leads to problems as demonstrated in [6]. We adapt the definition in [6] to TUU-games. The
definition of the Weak Sequential Core in [9] for an incomplete markets exchange economy is
based directly on the characterization we present in Theorem 4.4. We would also like to point
out the similarity of our recursive definition to the one used in the concept of Coalition-Proof
Nash equilibrium [1]. In both cases the notion of self-enforcement is interpreted as the absence
of deviating sub-coalitions, where the recursive approach guarantees consistency of this notion.

Example 3.4 (continued). We show that x̄ is the only allocation which belongs to the Weak Se-
quential Core of the game. For an allocation x to belong to the Weak Sequential Core, it must hold
that x1

1 � 1, since otherwise player 1 could credibly block x in state 1 by x̂1
1 = v1({1}) = 1. An

analogous reasoning implies that x2
1 � 0. Similarly, x2

2 � 1 must hold, since otherwise player 2
could credibly block x in state 2 by x̂2

2 = v2({2}) = 1, and by analogous reasons we have x1
2 � 0.

Now it follows from feasibility for the grand coalition that x̄ is the only candidate element of
WSC(Γ ).

Clearly, singleton coalitions cannot deviate from x̄ at any state. The same is obviously true
for the grand coalition at any future state. The arguments already used to derive that x̄ is the only
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candidate as a Weak Sequential Core element, imply that the grand coalition does not have a
credible deviation from x̄ at state 0.

4. Characterization

In this section we provide a useful characterization for the Weak Sequential Core. Consider
a particular credible deviation at state 0 by some coalition. We show that the set consisting of
all credible deviations which improve the utility of all coalition members by the same amount or
more is a compact set.

Lemma 4.1. Let x̄ be a feasible allocation and let x̂C be a credible deviation from x̄ at state 0 by
a coalition C of size greater than or equal to two. Let X be the set of credible deviations xC from
x̄ at state 0 by coalition C such that ui(xi) � ui(x̂i) for all i ∈ C. Then the set X is compact.

Proof. First we show that X is closed. Consider a sequence (xC
m)m∈N with xC

m ∈ X converging
to x̃C . We need to show that x̃C ∈ X, so

(i) x̃C is a credible deviation from x̄ at state 0 by C,

(ii) ui(x̃i) � ui(x̂i) for all i ∈ C.

The continuity of ui implies ui(x̃i) � ui(x̂i) for all i ∈ C, thus (ii) holds.
Clearly, x̃C is a deviation from x̄ at state 0 by C, so if x̃C is not a credible deviation then there

is a credible deviation yD from x̃C at s′ ∈ S′ by a sub-coalition D � C. Since ui(x̃i) < ui(yi)

for all i ∈ D there must be an m̂ such that if m > m̂ then for all i ∈ D, ui(xi
m) < ui(yi). This

makes yD a credible deviation from xC
m at state s′ by coalition D, a contradiction, so (i) holds.

Hence, X is closed.
Now we show that X is bounded. For all xC ∈ X it holds that

xi � v
({i}), i ∈ C,

since no player in C should have a credible deviation from xC at any s ∈ S. Therefore X is
bounded from below. Since xC(C) � v(C), it follows that X is also bounded from above. �

Note that Lemma 4.1 is not true for the set of deviations rather then the set of credible de-
viations, since in the case of deviations it might be possible to compensate arbitrarily negative
payoffs in one state by sufficiently high positive payoffs in other states. For the same reason,
Lemma 4.1 is not true for singleton coalitions, since for these coalitions deviations and credible
deviations coincide.

Our characterization of the Weak Sequential Core makes use of the classical notion of the
Core of a TU-game.

Definition 4.2. A coalition C can improve upon an allocation x̄ in a TU-game (N,v) if
x̄(C) < v(C).

Definition 4.3. The Core C(N,v) of a TU-game (N,v) is the collection of allocations x̄ such
that x̄(N) = v(N) and there is no coalition C that can improve upon x̄.
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The Weak Sequential Core can be characterized by means of the Core of suitably chosen
subgames.

Theorem 4.4. The following two statements are equivalent:

(a) x̄ ∈ WSC(Γ ),
(b) x̄ is such that x̄s ∈ C(Γs) for all s ∈ S, and there is no C ⊂ N and allocation xC such that

xC
s ∈ C(Γs,C) for all s ∈ S, and ui(xi) > ui(x̄i) for all i ∈ C.

Proof. (a) ⇒ (b). Consider some state s ∈ S and suppose there is a coalition C ⊂ N that can
improve upon x̄s by xC

s . We define xC−s = x̄C−s . Either xC is a credible deviation from x̄ at state
s by coalition C or there is a sub-coalition D � C such that D has a credible deviation yD from
xC at s. In the latter case yD is also a credible deviation from x̄ at state s by coalition D. In both
cases we have a contradiction with x̄ ∈ WSC(Γ ). It follows that x̄s ∈ C(Γs).

Suppose there is C ⊂ N and xC such that xC
s ∈ C(Γs,C) for all s ∈ S, and ui(xi) > ui(x̄i)

for all i ∈ C. We show that if such a deviation exists then there also exists a credible deviation,
thereby contradicting (a). If xC is a credible deviation from x̄ at 0 by C, then we are done, so
suppose this is not the case. Since xC

s ∈ C(Γs,C) holds for all s ∈ S, there cannot be a credible
deviation from xC at s ∈ S by some coalition D � C, so there must be a credible deviation yD

from xC at state 0 by some coalition D � C. But then yD is also a credible deviation from x̄ at
state 0 by D since ui(yi) > ui(xi) > ui(x̄i) for all i ∈ D.

(b) ⇒ (a). Suppose (a) does not hold. Since x̄s ∈ C(Γs) for all s ∈ S, no coalition has a
credible deviation from x̄ at s ∈ S and so there must be a credible deviation x̂C from x̄ at state 0
by a coalition C. We will show that then there also exists a credible deviation x̃C from x̄ at state
0 by coalition C such that x̃C

s ∈ C(Γs,C) for all s ∈ S, thereby violating (b). When C contains a
single player, say i, we define x̃C

s = vs({i}) for all s ∈ S and we are done, so consider the case
where C is of size greater than or equal to two.

Let X be the set of credible deviations xC from x̄ at state 0 by C with the property that
ui(xi) � ui(x̂i) for all i ∈ C. Let x̃C be a solution of the problem

max
xC∈X

∑
i∈C

ui
(
xi

)
. (1)

Since the allocation x̂C belongs to X, X is non-empty. We know from Lemma 4.1 that X is
compact. Therefore the set of maximizers in (1) is non-empty.

We show that x̃C
s belongs to C(Γs,C) for all s ∈ S. Suppose there exists a state s ∈ S for

which x̃C
s /∈ C(Γs,C). Then there is a coalition D ⊂ C that can improve upon x̃C

s by means of
yD
s � x̃C

s . We define the allocation yD by setting yD−s = x̃C−s . Since x̃C is a credible deviation
from x̄, either D = C or D � C and there is a proper sub-coalition of D with a credible counter-
deviation from yD at state s. The latter credible counter-deviation is a credible deviation from
x̃C at state s, a contradiction. It follows that D = C.

We show that yC belongs to X. By the separability of the utility function it holds that ui(yi) >

ui(x̃i) � ui(x̂i) for all i ∈ C. Moreover, since x̃C is a credible deviation from x̄ at state 0 by C

and yC
s � x̃C

s for all s ∈ S, we have that yC is a credible deviation from x̄ at state 0 by C, and it
follows that yC ∈ X.

We have that
∑

i∈C ui(yi) >
∑

i∈C ui(x̃i), which contradicts that x̃C is a maximizer. We have
shown that x̃C ∈ C(Γs,C) for all s ∈ S. �
s
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Table 1
Characteristic function.

v ∅ {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
v1 0 5 50 10 140 20 140 150
v2 0 50 5 10 140 140 20 150

For an allocation to belong to the Weak Sequential Core of the TUU-game Γ, the allocation
should belong to the Core of the TU-game Γs in every state s ∈ S. Moreover, no coalition should
be able to pick an element of the Core of the game restricted to C in every state, and in doing so
improve utility in an ex ante sense.

It follows immediately from Theorem 4.4 that the Weak Sequential Core of a TUU-game with
one state coincides with the Core of that game.

In a TUU-game one can distinguish ex ante and ex post efficiency.

Definition 4.5. An allocation x̄ is ex ante efficient in the game Γ if:

(i) x̄(N) = v(N).

(ii) There does not exist an allocation x with x(N) � v(N) such that ui(xi) > ui(x̄i) for all
i ∈ N .

Definition 4.6. An allocation x̄ is ex post efficient in the game Γ if x̄(N) = v(N).

Note, that the concept of ex post efficiency says more than the usual feasibility conditions in
TU-games, since it requires

∑
i∈N x̄i

s = vs(N) to hold at all states s ∈ S, but contrary to ex ante
efficiency it does not imply Pareto-efficiency, since it does not consider reallocation possibilities
across states.

Corollary 4.7. If x̄ ∈ WSC(Γ ), then x̄ is ex post efficient.

Observe that Example 3.4 demonstrates that an allocation in the Weak Sequential Core might
not be ex ante efficient.

5. Non-emptiness

Kranich et al. [7] show that the Weak Sequential Core of a finite deterministic sequence of
TU-games is non-empty if all utility functions are linear. Predtetchinski et al. [9] give sufficient
conditions for non-emptiness for the case of an exchange economy with two agents. These are
the only results in the literature so far regarding non-emptiness of the Weak Sequential Core.
Both papers present examples where the Weak Sequential Core is empty.

The Weak Sequential Core can also be empty in a TUU-game, as shown in the following
example.

Example 5.1. Consider a TUU-game Γ with three players and two future states, both occurring
with equal probability. The characteristic function v is presented in Table 1.

Players are strictly risk averse expected utility maximizers.
By Theorem 4.4 only allocations in the Core of Γ1 and Γ2 can be stable. The Core of each of

these TU-games consists of exactly one vector:
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C(Γ1) = {
(10,130,10)

}
,

C(Γ2) = {
(130,10,10)

}
.

The resulting allocation

x̄ = (
x̄1, x̄2, x̄3) =

(
10 130 10

130 10 10

)
leads to high uncertainty for players 1 and 2, which could be completely eliminated if they
cooperated. Coalition {1,2} can credibly deviate from x̄ by perfectly pooling their risks at state 0,
using

x{1,2} = (
x1, x2) =

(
70 70
70 70

)
,

and so achieving a higher utility, since both players are strictly risk-averse expected utility max-
imizers. We have shown that WSC(Γ ) = ∅.

We show next that if Γs is convex for all s ∈ S, then the Weak Sequential Core is non-empty.
Notice that in Example 5.1 convexity is violated for both Γ1 and Γ2.

Definition 5.2. A TU-game (N,v) is convex if for all C ⊂ N and for all S � T ⊂ N\C it holds
that v(S ∪ C) − v(S) � v(T ∪ C) − v(T ).

Theorem 5.3. Let the TUU-game Γ be such that Γs is convex for all s ∈ S. Then WSC(Γ ) = ∅.

Proof. Let π : N → N be a permutation, assigning rank number π(i) to any player i ∈ N. For
a player i ∈ N, we define πi = {j ∈ N | π(j) � π(i)} as the set of predecessors of player i. For
every s ∈ S, the marginal vector mπ(Γs) ∈ RN is given by

mπ,i(Γs) = vs

(
πi

) − vs

(
πi

∖{i}), i ∈ N,

and thus assigns to player i his marginal contribution to the worth of the coalition consisting of
all his predecessors in π . We show that x̄ defined by x̄s = mπ(Γs), s ∈ S, belongs to WSC(Γ ).

Since Γs is convex, it holds that x̄s ∈ C(Γs) for all s ∈ S [12]. Using Theorem 4.4, it remains
to be shown that there is no C ⊂ N and allocation xC such that xC

s ∈ C(Γs,C) for all s ∈ S, and
ui(xi) > ui(x̄i) for all i ∈ C.

Consider C ⊂ N and xC with xC
s ∈ C(Γs,C) for all s ∈ S. Let i be the player in C with the

highest value of π(i). It holds that

xi
s � vs(C) − vs

(
C

∖ {i}) � vs

(
πi

) − vs

(
πi

∖ {i}) = x̄i
s ,

where the first inequality follows since xC
s ∈ C(Γs,C) and the second inequality since by the

choice of i as the highest ranked player in C according to π it holds that C \ {i} ⊂ πi \ {i} and Γs

is convex. By monotonicity of ui we have that ui(xi) � ui(x̄i), which completes the proof. �
In the proof of Theorem 5.3 we construct an allocation in the Weak Sequential Core by fixing

a permutation and allocating the payoffs in each state by means of the corresponding marginal
vector. Convexity of Γs implies that all marginal vectors belong to the Core of Γs. Convexity is
used once more to demonstrate that the highest ranked player in a deviating coalition gets less
payoff in each state than in the original allocation.
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An interesting feature of Theorem 5.3 is that we do not need to make additional assumptions
on the utility functions of the players. Within the framework of expected utility, we allow for both
risk-averse and risk-loving players. Also many theories of non-expected utility maximization are
covered by our result. This is in contrast to the classical definition of the Core, which might be
empty-valued under the same assumptions. Considering the lack of results on non-emptiness of
the Weak Sequential Core in the literature so far, this comes as a surprise.

The idea of fixing a certain permutation in the proof, might suggest that the convexity as-
sumption could be weakened to permutational convexity; i.e. assuming that each TU-game Γs is
permutationally convex with respect to the same permutation π . Note however, that this weaker
assumption holds for the TUU-game presented in Example 5.1 for the permutation π = (3,2,1),
whereas the Weak Sequential Core of that game is empty.

We show next that it is not possible to weaken convexity to exactness, a property introduced
in [11].

Definition 5.4. A TU-game (N,v) is exact if for all C ⊂ N there exists a core allocation x such
that x(C) = v(C).

For TU-games with three players, the notion of convexity coincides with the one of exactness.
For games with more than three players, exactness is a weaker property. To verify whether a game
is exact, we use the notion of exact balancedness, introduced in [3]. For C ⊂ N, a(C) ∈ RN is
the membership vector in C, where ai(C) = 1 if i ∈ C and ai(C) = 0 otherwise.

Definition 5.5. An exactly balanced vector of weights is a vector (λC)C∈N such that λD ∈ R for
some D ∈ N , and λC ∈ R+ for all C = D, and

∑
C∈N λCa(C) = a(N). A TU-game (N,v) is

exactly balanced if
∑

C∈N λCv(C) � v(N) for all exactly balanced vectors of weights.

The following result was shown in [3].

Theorem 5.6. A TU-game (N,v) is exact if and only if it is exactly balanced.

The only difference to the condition of balancedness is that one weight, λD, is not restricted to
be non-negative. Since this creates an extra degree of freedom, the set of exactly balanced vectors
is larger than the set of balanced vectors, so the class of exactly balanced games is a subset of the
class of balanced games. Exact balancedness can also be used to give any easy proof of the fact
that the class of exactly balanced games is a subset of the class of totally balanced games.

The following example shows that the Weak Sequential Core can be empty when all the games
Γs are exact.

Example 5.7. Consider a TUU-game Γ with five players and six future states, all occurring with
equal probability. All players are strictly risk-averse von Neumann–Morgenstern utility maxi-
mizers. We consider the vectors w1 = (2,1,3,0,2) and w2 = (0,5,1,2,0), and we define a
TU-game (N,w) with N = {1, . . . ,5} by

w(C) = min
{
w1(C),w2(C)

}
, C ⊂ N.

We define the permutations π1, . . . , π6 by

π1 = (1,2,3,4,5), π3 = (3,1,2,4,5), π5 = (2,3,1,4,5),

π2 = (1,2,3,5,4), π4 = (3,1,2,5,4), π6 = (2,3,1,5,4),



H. Habis, P.J.J. Herings / Journal of Economic Theory 146 (2011) 2126–2139 2137
and, for s = 1, . . . ,6, we define the TU-game Γs = (N,vs) by setting

vs(C) = w
(
πs(C)

)
, C ⊂ N,

resulting in a TUU-game Γ with five players and six states.
The TU-games (N,vs) are all obtained by renaming the players in the TU-game (N,w). All

properties derived for (N,w) thereby immediately carry over to the games (N,vs) by taking ap-
propriate permutations. We first analyze (N,w). We show that (N,w) is exact. By Definition 5.5
we have to check exact balancedness. Consider a vector of balancing weights (λC)C∈N . If all
the balancing weights are non-negative, then

∑
C∈N

λCw(C) � min

{ ∑
C∈N

λCw1(C),
∑
C∈N

λCw2(C)

}
� min

{
w1(N),w2(N)

} = w(N),

where the second inequality follows from the additivity of the TU-games derived from w1

and w2. If one of the balancing weights is negative, say λD, then assume without loss of gener-
ality that w(D) = w1(D). We have that

∑
C∈N \{D}

λCw(C) � min

{ ∑
C∈N \{D}

λCw1(C),
∑

C∈N \{D}
λCw2(C)

}

� min
{
w1(N) + λDw1(D),w2(N) + λDw2(D)

} = w(N) + λDw(D).

We next compute the Core C(N,w). It is immediate to verify that w1,w2 ∈ C(N,w), as well
as all convex combinations μw1 +(1−μ)w2, where λ ∈ [0,1]. Choices for μ below 0 or above 1
lead to allocations outside the Core. We show next that C(N,w) is contained in a 1-dimensional
space, leading to the characterization of the Core of (N,w) as the convex hull of w1 and w2.

Let x ∈ C(N,w). Since x(N) = w(N), we have that

x1 + x2 + x3 + x4 + x5 = 8. (2)

Since w({1,2,3}) = 6 and w({4,5}) = 2, we find that

x4 + x5 = 2. (3)

It holds that

x3 + x4 = 3, (4)

x2 + x3 + x5 = 6, (5)

since w({1,2,5}) = 5 and w({3,4}) = 3, and w({1,4}) = 2 and w({2,3,5}) = 6, respectively.
Since (2)–(5) are four independent equations in five unknowns, we have shown that the Core of
(N,w) is contained in a 1-dimensional space.

Consider x̄ ∈ WSC(Γ ). By Theorem 4.4 it holds that x̄s ∈ Γs for all s ∈ S. Moreover, there is
no C ⊂ N and allocation xC such that xC

s ∈ C(Γs,C) for all s ∈ S, and ui(xi) > ui(x̄i) for all
i ∈ C. Suppose there are states s, s′ ∈ S such that x̄4

s = x̄4
s′ . Take C = {4,5}. Since x̄4

s + x̄5
s = 2

for all s ∈ S, it holds that

xC
s̄ :=

(
1

6

∑
x̄4
s ,

1

6

∑
x̄5
s

)
∈ C(Γs̄,C), s̄ ∈ S.
s∈S s∈S
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Because players 4 and 5 are strictly risk-averse, we have that u4(x4) > u4(x̄4) and u5(x5) >

u5(x̄5), a contradiction to x̄ ∈ WSC(Γ ). Consequently, it holds that x̄4
s and x̄5

s are independent
of s.

We define α ∈ [0,2] to be equal to x̄4
s . Since C(Γs) is the convex hull of w1 and w2 up to the

permutation πs, we find that x̄1 = (2 − α,α,3 − α,1 + α,1 + 2α,5 − 2α). Moreover, x̄2 and
x̄3 are identical to x̄1, up to a permutation. For C = {1,2,3}, we define the allocation xC by
xC
s = (2,2,2) for all s ∈ S. It is easily verified that (2,2,2) ∈ C(Γs,C) for all s ∈ S. Since the

players in C are strictly risk averse, we have that ui(xi) > ui(x̄i) for all i ∈ C. By Theorem 4.4
this contradicts x̄ ∈ WSC(Γ ).

We have shown that WSC(Γ ) = ∅.

6. Conclusion

In this paper we have introduced uncertainty into transferable utility games. Since in real-
ity most surplus sharing decisions are made under uncertainty, this is a natural and important
extension. It is not straightforward though, how to define an appropriate core concept for this
stochastic setting. In this paper we consider allocations that are stable in the absence of com-
mitment possibilities. These requirements lead to the notion of credibility. A credible deviation
is self-enforcing in the sense that a coalition can credibly deviate from a given allocation if no
sub-coalition ever has a credible counter-deviation. These considerations lead to the definition of
the Weak Sequential Core.

We have an easy characterization of the Weak Sequential Core. All allocations in the Weak
Sequential Core belong to the Core of the transferable utility game played after the resolution
of uncertainty. Moreover, no coalition can block an allocation in the Weak Sequential Core ex
ante by means of an allocation that belongs to the Core of all the ex post games reduced to
the coalition. This property facilitates the application of the concept and the proof of its non-
emptiness. We show that convexity of the ex post games is sufficient for the non-emptiness of
the Weak Sequential Core, but that convexity cannot be weakened to permutational convexity or
exactness.
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