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Chapter 1 

General introduction 
 



 

 

General introduction 

 
‘Neither fat nor flesh’. That is how brown adipose tissue (BAT) was first described by Konrad 

Gessner in the 16th century (1). Brown adipose tissue resembles skeletal muscle tissue, due 

to the high perfusion and the large number of mitochondria in the cells, which give it its 

brownish colour. This resemblance with skeletal muscle cells is explained by the fact that both 

cell types are from a common progenitor cell type (2, 3). Brown adipocytes also resemble 

normal white adipocytes as both store lipids inside the cell. BAT is of vital importance in the 

mammalian pedigree, as it protects against cold by producing heat (4). To allow the 

production of heat, mitochondria in brown adipose tissue have a special characteristic, 

allowing a process called ‘mitochondrial uncoupling’. 

 

Mitochondria are cellular organelles equipped to produce energy in the form of ATP. To this 

end, mitochondria use the breakdown products from glucose and lipids, such as pyruvate and 

fatty acids, to transport protons across the mitochondrial inner membrane, leading to a 

proton gradient (4). The difference in proton levels provides potential energy. This energy can 

be used to form adenosine triphosphate (ATP), the main energy carrier for the body’s 

metabolic processes, from ADP. In this way, the combustion of glucose and lipid is coupled to 

ATP production. Mitochondria in  brown adipose tissue are equipped with a so-called 

uncoupling protein 1 (UCP1) that allows production of heat. Upon activation by cold 

exposure, UCP1 short-circuits the respiratory chain and lowers the proton gradient, thereby 

uncoupling substrate oxidation from ATP production, and dissipating the potential energy as 

heat (Figure 1) (4-6).  

 

Cold is the most effective way to activate brown adipose tissue. Cold exposure stimulates 

thermoreceptors in the skin, which in turn activate neurons in the ventromedial nucleus of 

the hypothalamus, leading to the local release of norepinephrine. The norepinephrine leads 

to vasoconstriction in the extremities, which prevents heat loss. Brown adipose tissue is also 

strongly innervated by the sympathic nervous system, and the released norepinephrine binds 

the β3 adrenergic receptor on the brown adipocyte thereby activating an intracellular 

signalling cascade that, among others, activates UCP1 (7, 8). As a result, extra heat is produced 

as described above. This is referred to as non-shivering thermogenesis, in contrast to 

shivering thermogenesis, which refers to heat production through the contraction of skeletal 

muscles during shivering.  

In early studies, depots of brown adipose tissue have been described in adult human 

cadavers. Anatomical studies in the 1970s showed that in adult humans, the main location of 

brown adipose tissue is in the neck, behind the clavicles, next to the vertebral column and 

next to the kidneys (Figure 2) (9-12).  In small mammals these depots were mainly located 

around and between the scapulae, near the base of the hind legs and surrounding the visceral 

organs (13).   



 

 

 

 

 

 
Figure 1. Activation of brown adipocytes by cold exposure, with the use of substrates, leads 
to heat production. 

 
 

 
Figure 2. Distribution of brown adipose tissue in humans.  



 

 

It had been shown that brown adipose tissue was able to induce mitochondrial uncoupling, 

but the mechanisms was only discovered in 1968 when UCP1 was found in these tissues (10, 

11, 14). 

 

In the early 2000s, techniques from nuclear medicine, involving radioactive tracers such as 

fluordeoxy-glucose (FDG) combined with PET/CT imaging, were used by researchers to study 

the metabolic activity of tissues in the body. Using PET/CT, it was observed that in humans, 

under certain conditions, symmetric glucose uptake in the neck region could be observed. 

However, it took until 2009 before three research groups independently described the 

presence of brown adipose tissue in human adults and showed that the activity was enhanced 

by cold exposing the human volunteers (15-17). 

 

In homoeothermic small animals, such as rodents but also in babies, brown adipose tissue 

plays an important role in maintaining a stable body core temperature without shivering. Also 

in hibernators, brown adipose tissue can generate extra heat for raising the body temperature 

(4, 18). As humans do not hibernate and have, because of the large body size a relatively small 

body surface to volume ratio, there is less need for active brown adipose tissue. It is therefore 

not unexpected that brown adipose tissue is found in smaller quantities compared to rodents 

and other small mammals. Nevertheless, the discovery of functional BAT in adults sparked 

new research into the role of brown adipose tissue in human energy and substrate 

metabolism. 

 

 

Energy balance and brown adipose tissue 

 
When body weight is stable, on the long term energy expenditure is balanced by energy 

intake (19).  However, our modern society is generally characterised by a relatively high 

dietary intake, while energy expenditure is not increased to match the increased intake; in 

fact energy expenditure due to physical activity is low and has been decreasing at the 

population levels. This combination will lead to a gain in body weight and increased fat mass 

(20, 21). Lifestyle programs mainly focus on dieting (decrease EI) and increased physical 

activity (increase EE), but long-term adherence to these interventions are disappointing. Cold 

exposure and brown adipose tissue activation could, in addition to other lifestyle factors, 

contribute to counteract obesity by increasing energy expenditure. 

 

Obesity can affect our metabolic health. After a meal, the body will produce insulin to store 

nutrients, such as fats and sugars. The excess energy from dietary intake is stored in several 

tissues, depending on the dietary component. Lipids are mainly stored in adipose tissue in the 

form of triglycerides, while glucose is mainly stored in liver and skeletal muscle in the form of 

glycogen. In obesity the amount of adipose tissue is increased, with spill over of triglycerides 



 

 

in to the rest of the body. These excess lipids can be stored in metabolically active tissues, 

such as liver and muscle and accumulation of fat in these tissues leads to a disturbed response 

to insulin (22). This means that insulin released from the pancreas does lead to a diminished 

uptake of glucose from the meal, which is referred to as insulin resistance. Clinically this 

results in an increased plasma glucose level and insulin resistance, which are the hallmarks of 

type 2 diabetes mellitus (22). Type 2 diabetes leads to the development of symptoms such as 

polyuria and polydipsia, as well as the development of long-term complications such as nerve 

and retinal damage.  

 

 
Figure 3. The process from increased body weight to atherosclerosis. 

 

In addition to these glycemia-induced damages, the excess lipids and glucose contribute to 

the development of inflammation in wall of blood vessels, leading to the development of 

atherosclerosis as shown in Figure 3. This process affects both small and larger blood vessels 

and can lead to complications such as myocardial infarctions and renal failure (23).    

 

 

Brown adipose tissue and substrate metabolism 

 
The activation of brown adipose tissue is accompanied by an increased uptake of substrates 

such as glucose and fatty acids that fuel the mitochondria. In mice, it is has been shown that 

brown adipose tissue takes up huge amounts of substrates during cold exposure, effectively 

clearing these substrates from the bloodstream (24). Notably, even the development of 

atherosclerosis was reduced in mice after repeated cold exposure (25). It is therefore 

interesting to investigate whether cold exposure could be used in obese humans to reduce 

levels of glucose and lipids during acute cold exposure. To this end, in chapter 5 we 

investigated the changes in postprandial lipid levels during acute non-shivering cold exposure.  

 

Additionally, it has been shown that repeated cold exposure (e.g. for several days up to 

several weeks) can lead to adaptations in the human body; this is referred to as cold 

acclimation. Especially interesting is the fact that the cold-induced non-shivering 



 

 

thermogenesis and brown adipose tissue volume and activity are all increased after 10 days 

of cold acclimation (26, 27).  Besides, cold acclimation has been shown to lead to reduced 

glucose levels and increased oxidative capacity in young healthy volunteers (28). In addition, 

Hanssen et al. showed a significant improvement in insulin sensitivity after 10 days of cold 

acclimation in patients with type 2 diabetes mellitus (29). Interestingly, the improvement in 

insulin sensitivity was not accompanied by an increased brown adipose tissue activity, but 

with increased translocation of glucose transporters, such as GLUT4, and increased glucose 

uptake in skeletal muscle. This would indicate that skeletal muscle could play an important 

role in adult humans during non-shivering cold acclimation. We further examined the role of 

skeletal muscle tissue in non-shivering cold acclimation in chapter 4. 

 

While our focus is on the contribution of brown adipose tissue to the effect of non-shivering 

cold exposure and acclimation, research also indicates a role for skeletal muscles. This 

especially during shivering, however a overlap between BAT and skeletal muscles is suggested 

in more severe cold acclimation (30). Therefore a potential link may exist between these two 

tissues during cold exposure. Therefore we aimed at elucidating the role of both tissues in 

cold exposure. The information from this thesis could be helpful in improving human energy 

and substrate metabolism, which can be used to combat diabetes mellitus type 2 and 

atherosclerosis. We therefore studied the role of both brown adipose tissue and skeletal 

muscle during acute (non-)shivering cold exposure, as described in chapter 5, and after non-

shivering cold acclimation as described in chapter 4.  

 

 

Thesis outline 
 

The aim of this thesis was to evaluate the role of brown adipose tissue activation in human 

glucose- and lipid metabolism. The focus is on insulin sensitivity, postprandial lipid 

metabolism and brown adipose tissue activity. In order to achieve this goal, several 

intervention studies were performed.  

 

A review on the role of brown adipose tissue in human energy metabolism is described in 

Chapter 2.  As described in Chapter 3, brown adipose tissue activity was investigated in a 

placebo-controlled intervention study with nicotinamide riboside. This is a vitamin B3 

precursor aimed at improving mitochondrial function and brown adipose tissue activation. In 

this study, the effects of a 40-day supplementation of nicotinamide riboside on brown 

adipose tissue activity and volume were studied in a population of elderly volunteers with 

obesity. Additionally, these effects were also studied in, in vitro brown adipocytes, and mice. 

In Chapter 4 we investigated the effects of cold acclimation in a population of elderly patients 

diagnosed with obesity and type 2 diabetes mellitus. The main focus was on cold exposure 

without shivering, as to solely evaluate the role of brown adipose tissue activity and non-

shivering thermogenesis. The main outcomes were insulin sensitivity, postprandial lipid levels 



 

 

and arterial stiffness. The study described in Chapter 5 focuses on the effects of acute cold 

exposure on post-prandial lipid metabolism in young healthy adult humans. The main 

outcomes in this study were the postprandial levels of circulating substrates and the 

correlation with skeletal muscle oxidative capacity and brown adipose tissue activity. As 

described in Chapter 6, the potential link between brown adipose tissue and Madelung’s 

disease is investigated. In this study, a single patient diagnosed with Madelung’s disease was 

investigated. The main outcome was cold-induced brown adipose tissue activity and 

histological material taken from adipose tissue depots in this patient. In the final chapter, 

Chapter 7, the main outcomes of the major studies are discussed in a broader perspective.  
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Chapter 2 

Human brown adipose tissue: Underestimated target 

in metabolic disease? 
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Abstract  

 
Active brown adipose tissue (BAT) has, since it rediscovery in adult humans in 2009, received 

much attention for its ability to increase energy expenditure when activated. By means of 

mitochondrial uncoupling activity BAT’s main function is to produce heat instead of storing 

energy such as in white adipose tissue [1]. Therefore, BAT is considered a new potential target 

to treat obesity and the metabolic syndrome. However, the contribution of this thermogenic 

tissue is still a matter of debate among researchers.  

 

The aim of this review is to give an overview of the differences between classical brown 

adipocytes and inducible beige adipocytes in humans, and the potential activators of BAT in 

humans. Furthermore newly described genetic markers for identification of these two types 

of brown adipocytes are examined. Finally, the potential of the current measurement 

techniques, and the contribution of BAT activity to whole body energy expenditure are 

discussed.  

 

 

Highlights 
1. Human BAT can be divided in two types: classical and recruitable, although 

functional distinction is not evident 

2. Recent identified cell markers for thermogenic adipocytes are presented that 

potentially can be used to distinguish different BAT types  

3. The potential of different measurement techniques for the determination of BAT 

activity are discussed 

4. The contribution of BAT activity to human energy metabolism is potentially 

underestimated 

 

 

  



 

 

Introduction  

 
In modern society, energy intake often exceeds energy expenditure. This in turn leads to 

obesity, in which excess energy is stored in white adipose tissue [1]. Under a microscope, WAT 

can be recognized by the presence of a single large lipid droplet and few mitochondria. In 

contrast brown adipose tissue (BAT) is characterized by large amounts of mitochondria and a 

relatively small capacity of fat storage, and most importantly is responsible for non-shivering 

thermogenesis [2]. At least in animals BAT plays a dominant role in maintaining body 

temperature in the cold. The first description of BAT was by Konrad Gessner in 1551, who 

described it as ‘as nor flesh nor fat’. In 1985, Himms-Hagen described BAT as a tissue 

containing multilocular adipocytes with multiple lipid-containing droplets and many 

mitochondria [3]. The presence of uncoupling protein 1 (UCP1 aka thermogenin) in the 

mitochondria of BAT enables heat production. UCP1 uncouples the proton gradient of the 

electron transport chain that would normally be used to generate ATP, thus resulting in heat 

production [2]. 

 

In newborns of precocial species such as deer and lamb BAT is predominantly found in the 

perirenal fat deposit, while in rodents, and human newborns, it is mainly found in the 

interscapular area, as well as in the cervical, para-aortal and subcostal area [3].  In early 

studies by Huttunen et al in 1981 and by Heaton in 1972 brown adipocytes were seen in 

multiple adipose tissue depots in human subjects, in several age categories [4, 5]. 

Nevertheless, the assumption was that in humans BAT dissipates with age and interest in BAT 

was diminished. However in 2007, Nedergaard et al. reviewed nuclear imaging studies in 

humans that showed that the uptake of 18F-FDG (glucose) in the neck and shoulder region, 

was by brown adipose tissue [6]. Then in 2009, three independent research groups identified 

functional cold activated BAT in adult humans [7-9] igniting the discussion of its importance 

in human physiology and metabolism. Since then studies on BAT increased dramatically, 

although the amount of well-controlled intervention studies in humans is relatively scarce 

compared to the number of animal studies, cell studies and retrospective studies. The 

importance and contribution of human BAT in whole body metabolism is still not understood 

despite this strong revival of studies on BAT [10, 11]. In this review we will first discuss 

different types of thermogenic and UCP1-positive adipocytes. Next, we will discuss different 

ways to activate and measure BAT activity. Finally, we will examine the potential role of 

human BAT activity in relation to whole body metabolism and energy expenditure to prevent 

and/or treat obesity and the metabolic syndrome.  

 

  



 

 

Defining the brown adipocyte  

 
Brown adipocytes vs. beige/brite adipocytes  

In order to understand the role of BAT at the whole body level, we first need to examine what 

defines brown adipocytes. The presence and activation of uncoupling protein 1 (UCP1) in BAT 

is crucial for its function to produce heat. UCP1 is located in the inner membrane of 

mitochondria where it influences the proton gradient in oxidative phosphorylation. Normally 

oxidative phosphorylation generates ATP via the proton gradient that is present between the 

mitochondrial matrix and the mitochondrial intermembrane space. However, when 

activated, UCP1 uncouples the proton gradient from ATP-synthase thereby generating heat 

instead of ATP. Cold is the most effective way to activate BAT. Cold exposure stimulates 

thermoreceptors in the skin, which in turn activate neurons in the ventromedial nucleus of 

the hypothalamus, leading to the release of norepinephrine [2, 12]. The importance of the 

sympathetic nervous system is shown in studies with pharmacological blockade of adrenergic 

receptors, or lesions in the ventromedial nucleus in animals [13, 14]. In one such study, 

injections with glutamate into the ventromedial nucleus in mice induced a dose-dependent 

stimulation of interscapular BAT [13], while another study showed that β-blockade via 

propranolol results in reduced BAT activity [14].  

 

Norepinephrine binds the β3 adrenergic receptor on the brown adipocyte thereby activating 

the intracellular signalling cascade. Via second messenger cyclic AMP, activated protein 

kinase A (PKA) binds cAMP responsive binding element (CREB) stimulating gene transcription 

of UCP1. Secondly, PKA can directly stimulate lipolysis by activating hormone sensitive lipase 

(HSL) leading to the release of fatty acids from the intracellular lipid droplet. These 

intracellular released fatty acids also stimulate UCP1 [12]. Besides the essential sympathetic 

activity, other factors influence BAT activity as well. CREB stimulates transcription of 

iodothyronine deiodinase 2 (DIO2), which stimulates intracellular conversion of inactive 

thyroid hormone T4 to active thyroid hormone T3 [12]. Optimal BAT thermogenesis depends 

on intracellular levels of T3 [15, 16], which explains the association between hypothyroidism 

and lower body temperature and the feeling of cold [17].  

 

UCP1 is a requisite for uncoupling in adipocytes, however UCP1 expression is not always 

similar in thermogenic adipocytes found in different adipose tissue depots. In rodents, the 

presence and activity of BAT is a well-known and studied fact [18]. In these animals, the 

interscapular depot is most recognized for the presence of brown adipocytes [3]. These brown 

adipocytes are usually referred to as constitutive or classical brown adipocytes (cBAT). These 

cBAT cells are UCP1 positive, even without cold stimulation. Furthermore, classical brown 

adipocytes are myogenic factor 5 (myf5) positive indicating a similar lineage as skeletal muscle 

[19]. Peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1a) is known 

as an important regulator of mitochondrial biogenesis and plays a crucial role in adipogenesis 



 

 

of thermogenic adipocytes. Next to that PGC1a is able to activate the UCP1 gene in BAT [20].  

 

PRDM16 is a key element in differentiation of brown adipocytes in mice and humans. Indeed, 

knock down of PRDM16 in precursor cells for brown adipocytes, redirected differentiation in 

the direction of muscle cells [21]. In addition, in PRDM16 knockout mice, the BAT depots 

showed clear signs of whitening [22]. Upon cold exposure, the white adipose tissue depots 

showed no sign of compensatory browning. The adipose cells in knockout mice contained 

very few mitochondria, with less mitochondrial organisation then in wild type mice [22]. 

During cold exposure the knockout mice had a larger drop in core temperature then wild type 

mice, and total body energy consumption upon NE exposure was clearly depressed in the 

knockout mice. All in all, these results show the importance of PRDM16 in the regulation of 

BAT in mice [22].  

 

Cold exposure in rodents can transform the adipocytes in WAT. The discovery of recruitable 

adipocytes was already reported in 1984 in rodent WAT following cold [23]. These changes 

include, among others, increased mitochondrial biosynthesis and expression of UCP1, 

enabling a shift towards a brown adipocyte phenotype [24]. These recruitable adipocytes 

appeared to be from a myf5 negative lineage and are referred to as beige or brite (=brown in 

white) adipocytes [21, 24]. Histology clearly shows presence of these recruitable adipocytes 

in WAT following prolonged cold exposure [25]. Though originally from different lineages, 

classical brown adipocytes and recruitable adipocytes have similar cellular structure. Both 

possess paucilocular fat droplets and multiple mitochondria [25, 26]. Both also show strong 

activation upon cold exposure [25] as both types use UCP1 to uncouple ATP production to 

produce heat.  

 

In mice, the development of these recruitable brown adipocytes is a genetically controlled 

process because certain mouse strains display major increases in UCP1 expression in WAT 

following cold stimulation while others do not [27]. Furthermore in a knockout model, mice 

without cBAT compensate this loss by developing recruitable BAT [18]. There are also strong 

indications that britening and whitening occurs through a direct interconversion of a white 

adipocyte into a brown adipocyte phenotype, a process referred to as transdifferentiation, in 

which the earlier mentioned PDRM16 plays an important role [22, 28]. The main difference 

between cBAT and recruitable adipocytes is the presence of UCP1. In cBAT, UCP1 is always 

present, while in recruitable adipocytes UCP1 is upregulated following appropriate 

stimulation like cold exposure.  

 

In adult humans, biopsy material does not always resemble cBAT as seen in rodents. Biopsies 

of human BAT are UCP1 positive in adults and infants [7-9, 29], however it has been suggested 

that adipocytes in adult human BAT are more of a recruitable nature compared to classical 

brown adipocytes [25, 30]. Furthermore it is not known whether myf5 positive UCP1 positive 

adipocytes are present in humans. The suggestion that murine recruitable adipocytes are 



 

 

derived from a smooth-muscle like origin [31] might also hold true for human brown 

adipocytes.  

 

While cBAT in rodents persists with ageing [3], BAT in humans seems to dissipate in the elderly 

[32]. BAT activity is also lower in obese subjects, with an improvement after weight loss [33]. 

However recruiting BAT is a proven concept, both in obese and older human subjects [34-36]. 

These studies lead to the conclusion that recruiting BAT is a distinct possibility to influence 

energy metabolism in humans. We will discuss measuring BAT activity in humans below in 

section 3. 

 

Markers for BAT 

Although the composition and origin of BAT in humans is still under debate, it is evident that 

the adipocytes in human BAT are UCP1 positive and that these cells have the potential of 

norepinephrine and cold-stimulated thermogenesis [37]. It should be noted that BAT in 

mouse and man cannot simply be compared. Many publications are dedicated to identify 

molecular markers in order to distinguish thermogenic adipocytes [25, 38-41]. Although UCP1 

is the right marker of choice when examining brown and recruited adipocytes, it might not be 

the most practical marker, because it is located inside the mitochondria. Therefore, the 

scientific community has been looking for other markers aimed to identify UCP1 positive 

adipocytes that are preferentially expressed at the cell surface, in order to easily extract these 

cells via cell sorting experiments that could aid to further elucidate the origin of recruitable 

adipocytes in humans. Also in general, the discovery of novel markers of UCP1 positive 

adipocytes could help in drug development to enhance thermogenesis. It is not our goal to 

review all markers associated with BAT identity (for review see [42]). Here we present a 

selection of the most recently discovered molecular markers with high potential aimed to 

identify UCP1 positive adipocytes in humans, as shown in Figure 1. The discussed markers can 

either be targeted by pharmacological means or they provide novel insights into BAT origin 

and physiology.  

 

As mentioned earlier BAT is dependent on norepinephrine release from the sympathetic 

neuron. Following norepinephrine release, it binds 3 adrenergic receptor thereby activating 

BAT. The uptake of norepinephrine in adipocytes is inhibited by cell membrane transporter 

organic cation transporter 3 (OCT3). This transporter is able to shuttle various hormones 

across the cell membrane. Although ubiquitously expressed [43], higher expression can be 

detected in deep neck adipose tissue compared to human subcutaneous WAT [44]. OCT3 

function can be inhibited by corticosterone [44]. This opens pathways for future venues to 

develop pharmacological intervention directed to OCT3 that could stimulate human BAT 

activity.  

 

The PAT2 gene encodes a pH dependent proton/amino acid transporter that is selective for 

small chain amino acids [45]. The transcript for this gene was detected primarily in skeletal 



 

 

muscle and kidney [46]. When it comes to adipose tissue, PAT2 expression is specific for 

human BAT compared to subcutaneous WAT [47], however PAT2 was not detected in brown-

like/recruitable adipocytes from children in WAT [48] although these samples were UCP1 

positive. With an eye towards the future, PAT2 is a valuable marker to detect adipocytes that 

express UCP1. Because PAT2 is a cell surface expressed protein, this gives openings to isolate 

cells via cell sorting.  

 

Purinergic receptor P2X, ligand-gated ion channel 5 (P2RX5) belongs to a family of 

extracellular ATP-gated ion channels. The ion channel localizes to the cell membrane and its 

expression is high in immune system and brain [49]. P2RX5 is sensitive to changes in 

extracellular concentrations of calcium [50]. In adipose tissue, P2RX5 shows specificity 

towards human BAT over subcutaneous WAT [47]. In mice, P2RX5 is expressed in murine 

brown preadipocytes and its expression is further increased during adipocyte differentiation. 

Furthermore, expression of P2RX5 was increased following cold stimulation in mice in both 

BAT and subcutaneous WAT [47] similar to the response as UCP1.  

 

Mitochondrial tumor suppressor 1 (MTUS1 also known as ATIP) is a mitochondrial protein 

that controls cellular proliferation [51]. MTUS1 expression is higher in human BAT compared 

to WAT. MTUS1 expression can be regulated via cold, because human BAT biopsies after 

prolonged cold exposure showed an increase in MTUS1 [52]. Knockdown of MTUS1 in human 

cultured brown adipocytes resulted in reduced UCP1 expression and decreased mitochondrial 

uncoupling suggesting a role in BAT thermogenesis [52]. Interestingly in mice, overexpression 

of MTUS1 resulted in reduced inflammation, less recruitment of macrophages and increased 

insulin sensitivity in WAT [53]. These findings in WAT might suggest that BAT might handle an 

inflammatory insult better resulting in normal metabolism.  

 

KCNK3 (also known as TASK) encodes a pH sensitive potassium channel, subfamily K, member 

3 [54]. Expression of KCNK3 is specific to human BAT compared to human WAT [52, 55], and 

KCNK3 expression shows a negative correlation to age or BMI in human BAT [56]. The amount 

of KCNK3 is correlated with PRDM16 levels [52, 57]. KCNK3 negatively affects second 

messenger signalling of the beta-adrenergic receptor via cAMP [57]. KNCK3-/- mice are obese 

and their brown adipocytes show resistance to activation of the beta-adrenergic receptor 

[57]. Furthermore, the explanation for this phenotype was through enhanced 

mineralocorticoid receptor signalling, which could be targeted by the inhibitor eplerenone 

[57]. KCNK3 is an interesting marker to identify BAT, which in the future could result in novel 

methods to stimulate BAT in humans.  

 

Adenosine is a product of ATP breakdown; however it can also act as a signalling molecule 

via interaction with adenosine and purinergic receptors. Adenosine stimulates in vitro BAT 

activity and this stimulatory effect is further enhanced by adrenergic stimulation. More 

specifically, an agonist for the A2A receptor markedly increased in vitro BAT activity. In 



 

 

murine experiments, stimulation of BAT with norepinephrine results in release of adenosine 

further linking adenosine to BAT activity [58]. Novel ligands have been designed to target 

the A2A receptor (for review see [59]), however it remains to be seen how these compounds 

can affect human BAT activity.  

 

 
Figure 1. Overview of discussed recently identified cellular markers for human brown 
adipocytes. In the central pathway, cold exposure acting through norepinephrine on the β3 
receptor is shown, resulting in increased UCP1 expression. UCP1 (uncoupling protein 1) ; 
OCT3 (organic cation transporter 3) ; PAT2 (proton/amino acid transporter 2)  ; P2RX5 
(purinergic receptor P2X, ligand-gated ion channel 5) ; MTUS1 (mitochondrial tumor 
suppressor 1) ; KCNK3 (pH sensitive potassium channel, subfamily K, member 3). 
 

Summary/take home message 

Contrary to many rodent species, adipocytes detected in adult human BAT biopsies are mostly 

of a recruitable nature (beige or brite adipocytes) [25]. Characterisation of these recruitable 

brown adipocytes can be useful to better understand the origin of these adipocytes and to 

ultimately devise new strategies to stimulate thermogenesis in humans. Earlier attempts to 

characterize these recruitable BAT cells were built upon the use of genetic and intracellular 

markers, which often gave inconclusive results. Several new markers with high potential have 

been discovered in the recent past, especially to detect these BAT cells using cell membrane 

specific markers. These new markers focus on activation of BAT cells using different 

interventions.  

  



 

 

Brown adipose tissue activation and detection in humans  

 
 BAT activity stimulation besides cold exposure 

Besides cold exposure, pharmacological stimulants have also been tested in humans. A non-

selective systemic beta-adrenergic stimulation, by isoprenaline [60] and ephedrine [61] did 

not show significant activation in BAT glucose uptake and resulted in negative cardiovascular 

side effects [60]. More promising results are found in the use of a selective β3 stimulant, 

mirabregon. This showed an elevated glucose uptake in BAT upon stimulation [62] 

comparable to cold activation. However, the required dosage and potential side effects are 

still a matter of debate. Systemic administration of pharmacological stimulants is not selective 

for BAT only, as it also affects other tissues, such as white adipose tissue.  

 

The suspected relationship between BAT activity in humans and diet-induced thermogenesis 

(DIT) has also been an interesting topic. As reviewed by Kozak [63], the theory that excessive 

energy with food intake is expended as heat through BAT activation has not been proven. 

Vosselman et al [64] compared BAT activity after meal consumption with cold exposure. They 

found that the amount of BAT activity did increase after large meal consumption; however, 

there was no relationship with DIT.  

 

BAT may still be stimulated through certain dietary components such as compounds in green 

tea (cathechin-polyphenols and caffeine), peppers (capsinoids) and menthol [65, 66]. Green 

tea extract contains cathechin-polyphenols, which are able to inhibit catechol-O-methyl-

transferase, the enzyme responsible for the breakdown of sympathetically released 

norepinephrine. The caffeine, present in green tea extract, is believed to inhibit 

phosphodiesterase, which in turn breaks down the cAMP second messenger system. 

Furthermore, caffeine also acts as an antagonist on adenosine receptors (see above). Green 

tea extract could thus be used to potentiate the adrenergic and/or adenosine pathways and 

thus lead to more BAT activation [66].  

 

The pungent capsaicinoids, found in peppers are able to stimulate BAT activity via the 

transient receptor potential channels (TRPV) [65]. Stimulation of TRPV channels in the brain 

would lead to more sympathetic activity and in turn to increased BAT activity. However the 

strong pungency, may lead to reduced intake or gastrointestinal side effects [67].  The non-

pungent forms, known as capsinoids, have been studied for their potential to stimulate BAT 

[68]. However, this study only showed a higher increase in energy expenditure upon cold 

exposure in BAT positive subjects compared to BAT negative subjects using capsinoids.  

 

Another recently discovered potential stimulant in humans is sildenafil. Sildenafil is a well-

known phosphodiesterase type 5 (PDE5) inhibitor, commonly used to treat erectile 

dysfunction in men. By inhibiting PDE5, it can elevate levels of cGMP via guanylyl cyclase, 



 

 

which in turn can further stimulate lipolysis in BAT cells. Sildenafil was shown to induce 

browning in human WAT [69], and could thus be an interesting target for study in humans.  

 

As seen in earlier studies, the direct stimulation of soluble guanylyl cyclase has already been 

shown to increase whole-body energy expenditure and lipid uptake in BAT in mice, as well as 

inducing browning of murine white adipocytes [70, 71]. This makes increasing cGMP an 

interesting potential target for BAT stimulation. 

 

Measurement of BAT activity in humans 

In order to determine the role and the contribution of BAT to whole body metabolism in adult 

humans, quantitative measurements of BAT activity are needed. The rediscovery of the 

presence of active BAT in humans was accomplished by positron emission 

tomography/computed tomography (PET/CT) scans with a radioactive labelled glucose tracer, 

18-Fluoro-Deoxy-Glucose (18F-FDG) [7-9]. Ever since, the 18F-FDG-PET/CT technique has been 

the most used test for detecting the presence of BAT in humans. Alternatively, some studies 

use other substrate tracers such as 18-Fluoro 6-thia-heptadecanoidic acid (18F-FTHA) as a 

marker for fatty acid uptake. 

 

Besides substrate uptake, several other aspects of BAT activity can be measured such as 

oxidative metabolism, local blood perfusion and sympathetic innervation.  In the following, 

we will discuss the usefulness of some of these techniques to quantify the contribution of 

BAT to whole body metabolism. For a more exhaustive review of these techniques and 

tracers we would like to refer to Bauwens et al [72] and Chondronikola et al [73]  

In figure 2, we provide a visual overview of these methods.   

 

  



 

 

Table 1. Overview of different measurements of BAT activity 

Measurement of BAT aspect Quantitative analysis 

possible? 

Temperature  

Skin temperature [74-78] No quantitative analysis, 

only surface temperature 

Indirect and imprecise 

 

Substrate uptake tracers  

18-Fluoro 6 deoxyglucose [7-9, 36, 62, 79-81] Yes, glucose uptake rate 

18-Fluoro 6-thia-

heptadecanoidic acid 

[81-84] Yes, fatty acid uptake rate 

 

 

Adrenergic innervation  

123-Iodine meta-iodo-

benzylguanidine 

[85-88] No quantitative analysis, 

Sympathetic innervation 

18-Fluoro-L-

dihydroxyphenylalanine 

[89] No quantitative analysis, 

Sympathetic innervation 

 

Oxidative metabolism tracers  

Acetate [81, 83] No quantitative analysis, 

Oxidative metabolism 

15-Water [90, 91] Yes, Blood perfusion 

15-Oxygen [90, 92] Yes, oxygen consumption 

 

Additional techniques  

CT scan (Hounsfield Units) [82] No quantitative analysis,  

Changes in BAT density 

MRI scan  [93, 94] Changes in BAT water/fat 

fractions, potential of 

measuring metabolic 

processes 

Exosomal miRNA [95, 96] Associated with BAT 

activity in healthy subjects  

  



 

 

 
 

Figure 2. Overview of the different measurement techniques for brown adipose tissue 
activity, as discussed in the text. Centrally shown is cold exposure acting via norepinephrine 
on the β3 receptor. This in turn leads to increased UCP1 expression, resulting in heat 
production. ETC (electron transport chain); UCP1 (uncoupling protein 1) ; 18F-FDG (18-Fluoro-
Deoxy-Glucose) ; 18F-FTHA (18-Fluoro 6-thia-heptadecanoidic acid)  ; 123I-MIBG (123-Iodine 
meta-iodo-benzylguanidine)  ; 18F-DOPA (18-Fluoro-L-dihydroxyphenylalanine).  
 

Skin temperature 

Since active BAT releases energy in the form of heat, one way of measuring this energy is by 

looking at the temperature around the BAT depots. As BAT is active and releases heat, one 

can expect the temperature around the depot to increase. Measuring the skin temperature 

via thermometers or wireless sensors has been used before, while using the 18F-FDG PET/CT 

as a benchmark [77]. This study by Boon et al showed a positive correlation between 

supraclavicular skin temperature upon cold exposure and BAT volume and activity.  

 

Another option is the use of thermal imaging. Via an infrared thermal camera, it is possible to 

measure the temperature of a larger part of the skin’s surface.It is a quick and easy technique, 

without radiation exposure or invasive actions[76]. Several studies showed a significant 

correlation between BAT activity on 18F-FDG PET/CT and the changes in supraclavicular skin 

temperature [74, 77, 78]. The changes in the supraclavicular skin temperature are not 



 

 

consistent, which may be because of the different cooling techniques, air-cooled vs. water-

cooled respectively affecting the skin temperature differently [74]. 

 

The downside is that the increase in skin temperature at the cervical depots is offset by the 

cold exposure used to stimulate BAT. It is therefore difficult to estimate the amount of heat 

produced by BAT. Furthermore, the infrared thermal imaging and skin temperature do not 

measure the heat production in the deeper depots [76]. The amount of subcutaneous fat at 

the cervical region may also hinder the adequate measurement of the effect of BAT on the 

skin temperature [97, 98]. In conclusion, while this technique is non-invasive and is without 

radiation exposure, it is an imprecise and indirect measurement.  At best it is a qualitative 

approach. 

 

Measuring substrate uptake 

The details behind positron emission tomography are well discussed in the technical literature 

[99, 100]. In short, a so-called tracer is injected into the subject, after which the tracer will 

distribute inside the body. Tracers usually consist of a substrate with an attached radioactive 

component. The most well known tracer is 18F-FDG (18-fluoro deoxy-glucose). This consists of 

glucose, with an attached 18-fluor atom. Like normal glucose, this 18F-FDG undergoes uptake 

by glucose transporters [101, 102].  However, 18F-FDG is then only metabolized to 18F-FDG-6-

phosphate, as the next step in glycolysis does not happen to FDG. This is due to the fact that 

the enzyme responsible for the next step, glucose-6-phosphate isomerase is unable to 

convert FDG-6 phosphate. The reverse conversion of 18F-FDG-6-phosphate to 18F-FDG is not 

possible due to low levels of the necessary enzymes. The 18F-FDG remains therefore trapped 

inside the cell, and is only slowly broken down by other pathways [101, 102].  As the PET 

image only shows tissue tracer uptake, another technique is necessary to correlate the 

positron emission with an anatomical image.A regular computed tomography, is often 

performed together with the PET capture. This will provide a detailed anatomical scan, 

allowing a correlated image.  The 18F is an unstable isotope of the Fluor atom, and will decay 

into 18O, with concomitant release of energy. This released energy will be in the form of 

positrons, which is measured on a sensor outside the body.  The 18F-FDG is mainly trapped 

and visualized in those tissues of the body that take up glucose, such as the brain, the heart 

under specific conditions, tumours, and activated BAT.  

 

In the case of brown adipose tissue, the tracer is often administered after and during cold 

exposure. During the distribution phase, the tracer will localize to the active BAT, if present 

in the subject. Most tracers are usually used in a static scan, while BAT is a highly dynamic 

tissue. To measure tissue substrate uptake rate, a dynamic scan method can be used. A 

dynamic PET/CT, using Patlak curve [103, 104] fitting reveals a measure of glucose uptake 

rate [36]. 

 



 

 

For comparison between studies the procedures of the combined PET/CT (or PET/MR) 

requires clear descriptions and preferably standardization. In the so-called BARCIST (Brown 

Adipose Reporting Criteria in Imaging Studies) publication, an expert panel, assembled by the 

National Institutes of Diabetes and Digestive and Kidney diseases on November 4, 2014, 

wrote guidelines and suggestions for determining BAT activity in 18F-FDG PET/CT scans [105]. 

A main guideline states that determining the activity of BAT should be presented using 

standardized uptake values (SUV). The SUV is calculated as the ratio between the measured 

radioactivity of the tracer within a region and the dosage of the administered tracer relative 

to the body weight [105]. This makes comparing the results in repeated measurements or 

across different subjects possible. However, the subject characteristics, such as BMI (body fat 

percentage) influence the distribution of the tracer and therefore the SUV in the target tissue 

[105]. For instance, in obese subjects less 18F-FDG uptake is seen in BAT depots, which may be 

related to competition with the WAT depots. It may therefore be more applicable to calculate 

the SUV value as the tracer dosage relative to lean body mass. Other subject characteristics 

to take into account are medications, which influence the sympathetic nervous system, 

smoking habits and dietary components such as capsinoids [62]. There is still some 

uncertainty regarding the fate of the 18F-FDG once taken up and trapped by the BAT cells. It 

is unknown if it undergoes intracellular metabolism or if it is excreted after a certain time 

period. In diabetic subjects the insulin resistance in these subjects, may lead to less uptake 

and trapping of 18F-FDG in the cells.  

 

Besides the methodological variation, there is also the biological variation of BAT to take in 

to account. The outdoor temperature and climate also influence the analysis of BAT, as a cold 

climate or outdoor temperature may stimulate BAT activity and lead to increased BAT 

volume. Studies regarding cold acclimation and weight loss have shown to increase BAT 

volume and activity [14, 64, 105].  

 

FDG accurately reflects the capacity of tissue to take up glucose and is used as a standard 

diagnostic tool in cancer patients. However, FDG does not directly reflect the energy 

expenditure of BAT, where fatty acids (external and internal stored) are the main source of 

energy [2]. This can have important consequences for the interpretation of results, potentially 

leading to an underestimation of BAT energy metabolism. Indeed, use of different tracers 

show that depending on the type of tracer, the interpretation of the results (for instance the 

contribution of BAT to whole body energy expenditure) is different [90, 92]. 

 

Beyond FDG several alternative tracers - such as 99mTc-sestamibi, 

123Imetaiodobenzylguanidine (MIBG), 18F-fluorodopa, perfusion and oxygen consumption 

studies and also 18F-14(R, S)-FTHA - have been employed for BAT imaging [72]. Fatty acid 

metabolism (exemplified by FTHA uptake) may be less hampered by associated disturbances 

in glucose metabolism than FDG uptake in metabolic syndrome. Still for quantification, the 



 

 

use of FTHA may be difficult, because internal brown adipocyte fat stores are also used as fuel 

during BAT activation. 

 

Besides anatomical information the CT scan can also be used to register BAT activity. CT 

measures the density of the tissues, which is in the first place used to discriminate between 

BAT and WAT. However, during BAT activation, internal fat stores may be used which affects 

the density of the BAT. If the density is measured before and after an intervention (for 

instance cooling), the decrease in density can be used to estimate the lipids combusted by 

active BAT [82].  

 

Alternatively, magnetic resonance (MR) scans can be used to make an anatomical scan, 

instead of a CT scan. This technique allows for highly detailed anatomical information, 

without the extra radiation exposure a CT scan requires. PET/MRI systems have become more 

widely available. Moreover MRI (Dixon technique) can be used to determine the changes of 

the fat fraction in tissues that may reflect metabolic activity. Next to monitoring the fat 

fraction by Dixon MRI, the use of 1H Magnetic Resonance Spectroscopy (1H-MRS) can be used 

to follow metabolic changes in activated BAT (for instance NAD+ precursor nicotinamide 

riboside) [94]. Future studies are needed to reveal the applicability. 

 

Adrenergic innervation 

Another option is to measure the adrenergic innervation using 123-I meta-iodo-benzyl 

guanidine (123I-MIBG) as a tracer. This tracer binds to the adrenergic receptors present on 

cells, and could thus be used to determine the amount of adrenergic stimulation in BAT.  This 

tracer has been used in diagnosing pheochromocytomas and other tumours of adrenergic 

origin [87, 88].  One study combined 18F-FDG-PET/CT with MIBG-SPECT, which showed that 

both tracers show uptake in the same cervical regions [85], which would then be determined 

as BAT tissue.  Another option is to use 18-Fluoro-L-dihydroxyphenylalanine (18F-DOPA) as a 

tracer. This tracer is used in the same capacity as 123I-MIBG, and only a case report describes 

the use of 18F-DOPA in measuring BAT tissue [89]. Although capable of measuring the 

sympathetic innervation of BAT tissue, for the quantification of the contribution of BAT to 

whole body metabolism these tracers are not useful. 

 

Oxidative metabolism tracers 

The amount of blood flow to BAT can be measured using 15O labelled water (15O-H2O), as well 

as oxygen consumption via an oxygen-tracer (15O-O2). Only a few studies used these 

techniques and found that subjects with FDG uptake in the cervical region did have increased 

blood flow and oxygen consumption [90, 91]. However the estimated contribution of BAT to 

the total energy expenditure is small, about 5% of the total energy expenditure [90].  The 

major issue is that 15O has an extremely short half-life of about 2 minutes [93]. This in 

combination with the rapidly diffusing isotope and the limited field of view that can be studied 

with this technique may lead to an underestimation of BAT activity. The currently available 



 

 

studies also show the need for well attuned cooling procedures and the PET/CT procedure 

[90, 92]. 

 

Another option to measure BAT oxidative metabolism is to use 11-Carbon Acetate (11C-

Acetate) during dynamic scanning. This tracer is labelled with the 11-C isotope, and undergoes 

uptake in active tissues. Studies using 11C-Acetate have shown a significant oxygen 

metabolism of human BAT, [81, 83]. The use of these tracers might actually give the most 

direct measurement of BAT activity, as they measure the oxidative capacity of BAT. The short 

half-life of tracers such as 15O-O2, are issues that would need to be resolved, before they could 

be used to accurately quantify BAT energy consumption.  

 

Exosomal miRNA  

As published by Chen et al. in 2016 and Ng et al. in 2017, several micro RNA sequences 

(miRNA’s) have been found in association with BAT activity [95, 96].  Chen et al. analysed 

serum from both murine brown adipocytes as well as from cultured human brown adipocytes. 

They found several miRNA’s to be expressed differently. One of these miRNA’s, miRNA-92 

inversely correlated with BAT activity in young healthy subjects, as measured via PET/CT [95].  

Ng et al. describe another miRNA, miRNA-32, to be involved in the response of adipocytes to 

cold stress. After cold stress increased levels of miRNA-32 were associated with browning of 

white adipocytes, and increased levels of browning markers such as PGC1α and increased 

expression of UCP1 [96]. Further evaluation of the use of miRNA’s is needed, but the results 

are promising. The great advantage of this method would be in measuring BAT activity via 

blood sampling, and would possibly render the use of nuclear imaging and radiation exposure 

superfluous.   

 

 

Contribution of BAT to total body energy expenditure 

 
In a normal human, the total body energy expenditure (TEE) can be divided into different 

components: 1) energy expenditure during sleep (sleeping metabolic rate, SMR), 2) resting 

energy expenditure during arousal (Basic metabolic rate, BMR), 3) diet-induced energy 

expenditure (DEE) and the energy expenditure during activity (AEE) [106, 107]. Diet-induced 

thermogenesis (DIT) can be divided into an obligatory and a facultative component [108]. The 

obligatory component is the energy expended to consume, digest and metabolize food, while 

the facultative component depends on the composition and amount of food consumed [106, 

109]. 

 

Energy expenditure also increases during cold exposure, as the body is stimulated to maintain 

a stable core temperature. This thermogenesis can in turn be divided in two parts: shivering 

and non-shivering [110]. Shivering thermogenesis refers to the involuntary muscle 



 

 

contractions, which organisms show upon cold exposure. These contractions occur quickly 

upon cold exposure and generate heat in an effort to maintain a stable core temperature. 

Non-shivering occurs mainly in BAT, and is a process requiring adaptation [110].   

 

In order to measure the NST and potentially BAT activity, indirect calorimetry is normally 

used: the analyses of inhaled and exhaled air. By this means O2 consumption and CO2 

production can be determined and the amount of energy expended in time can be calculated 

[111]. When using this technique during both resting and cold exposure, the increase in 

energy expenditure upon cold exposure, the NST can be calculated. It appears in many studies 

that NST strongly correlates with BAT activity measured via 18F-FDG PET/CT [8, 36]. 

 

However, the contribution of activated BAT to whole body energy expenditure is still not 

established. In animals, especially rodents, the role of BAT is more clear-cut than in humans. 

The studies using tracers 15O-O2, which actually measure oxygen usage have all shown that 

the overall contribution of BAT to total energy expenditure comes down to about 1-5% of 

resting metabolic rate (RMR) [90, 92]. Though very interesting experiments, these 

measurements are hampered by the short half life of the isotopes of 2 minutes, the rapidly 

diffusing isotope and the use of a limited field of view (only a small part of the body is actually 

scanned). The authors therefore conclude that the activity of BAT may be underestimated. 

Their results are lower than based on an earlier estimation of BAT contribution using BAT 

metabolic rate from rodents and allometric comparison, as done by Van Marken Lichtenbelt 

and Schrauwen [108]. Their calculation revealed an estimation of 5 % of RMR. The data of the 

study of van der Lans et al [36], who performed a dynamic 18F-FDG PET/CT scan, show that 

glucose uptake rate varied substantially between subjects, from almost zero to more than 25 

umol/g BAT. When using these numbers maximal BAT activity comes up to 16 % of RMR and 

almost 90 % of NST. 

 

Although the current contribution of BAT is still a matter of dispute in humans, the potential 

of BAT can be significant. All current studies to increase BAT focus on a short period of 

exposure to cold (cold acclimation) or pharmacological stimulation.  

Cold acclimation, even as short as 10 days has been shown to increase BAT activity and 

volume [36]. As seen in different acclimation studies, the energy expenditure of BAT increases 

after acclimation, as well as the oxidative capacity [36, 81, 112]. A more recent study by 

Leitner et al. showed that FDG-uptake upon cold exposure also occurs outside of classical BAT 

depots [11]. They also show the 18F-FDG uptake in a patient with a paraganglioma with a long 

exposure to high levels of adrenergic hormones. This shows 18F-FDG uptake in the perirenal 

and subcostal WAT depots. This would mean that potentially these regions could be 

stimulated to develop BAT-like properties. Estimated by Leitner et al. a maximum of 115.5 

kcal/d could be produced by the entire BAT volume [11]. 

 



 

 

This estimation would lead to the conclusion that most studies thus far, have only shown an 

under appreciation of brown adipose tissue. A stronger or longer exposure to cold or 

pharmacological stimulants could lead to a much larger contribution of BAT to energy 

expenditure. The effect on metabolic health in that regard could be significant. Earlier studies 

have shown some effects on lipid and glucose metabolism, [79, 82] but a much more 

profound effect on metabolic health would be a welcome sight.  

 

In order to maximize the effect of BAT, more exposure to cold would be desirable. However, 

most studies have used a temperature of around 14-16 degrees Celsius, which is often not 

appreciated by subjects. A prolonged exposure to a less cold environment, may be a potential 

solution. New research should not only focus on finding new stimulants for BAT, but also on 

increasing the potential of BAT in humans.  

 

Although increasing energy expenditure can influence energy balance, potential 

compensation can occur by increased food intake. This could lead to attenuation of beneficial 

effects of increased energy expenditure on health and metabolism. There are indications that 

not all of the increase in energy expenditure is compensated [113].  

 

Another issue is the potential negative consequence of a prolonged increase in energy 

expenditure in obese subjects. Several observational studies showed that obese subjects with 

heart failure might have a better prognosis then lean subjects with heart failure [114, 115]. 

This so-called obesity paradox indicates that increasing energy expenditure to combat obesity 

should be closely observed for long-term cardiovascular side effects. In this case, the goal 

should be weight maintenance and not decrease of body weight. 

 

To conclude, brown adipose tissue remains an interesting and possibly underestimated target 

in metabolic health. Further exploration is needed to determine to what extent BAT activation 

can become a new treatment for obesity and its complications. 
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Abstract 

 
Context 

Elevating NAD+ levels systemically improves metabolic health, which can be accomplished via 

nicotinamide riboside (NR). Previously, it was demonstrated that NR supplementation in high 

fat diet (HFD)-fed mice decreased weight gain, normalized glucose metabolism and enhanced 

cold tolerance.  

 

Objective 

As brown adipose tissue (BAT) is a major source of thermogenesis, we hypothesize that NR 

stimulates BAT in mice and humans. 

 

Design and intervention 

HFD-fed C56BL/6J mice were supplemented with 400 mg/kg/day NR for 4 weeks and 

subsequently exposed to cold. In vitro primary adipocytes derived from human BAT biopsies 

were pretreated with 50 µM or 500 µM NR prior to measuring mitochondrial uncoupling. 

Human volunteers (45-65 years, BMI: 27-35 kg/m2) were supplemented with 1000 mg/day NR 

for 6 weeks to determine whether BAT activity increased, as measured by [18F]FDG uptake 

via PET-CT (randomized, double blinded, placebo-controlled, cross-over study with NR 

supplementation).  

 

Results 

NR supplementation in HFD-fed mice decreased adipocyte cell size in BAT. Cold exposure 

further decreased adipocyte cell size on top of that achieved by NR alone independent of ex 

vivo lipolysis. In adipocytes derived from human BAT, NR enhanced in vitro norepinephrine-

stimulated mitochondrial uncoupling. However, NR supplementation in human volunteers did 

not alter BAT activity or cold induced thermogenesis.  

 

Conclusions 

NR stimulates in vitro human BAT, however not in vivo BAT in humans. Our research 

demonstrates the need for further translational research to better understand the differences 

in NAD+ metabolism in mouse and human. 

  



 

  

Introduction 

 
Brown adipose tissue (BAT) has been proposed as a promising target to stimulate energy 

expenditure in humans with obesity or type 2 diabetes. The presence of uncoupling protein 1 

(UCP1) in mitochondria of BAT enables heat production instead of ATP synthesis while using 

glucose and fatty acids as fuel (1). The interest in human BAT was sparked by the discovery of 

active BAT in adult humans (2-5) and high BAT activity is associated with healthy whole body 

metabolism. Cold exposure is the most effective way to stimulate BAT activity in humans (6). 

Prolonged cold exposure may, however, not be an attractive treatment option for many 

people and thus pharmacological alternatives are actively explored. Numerous potential ways 

to activate BAT have been investigated for example vitamin A, FGF21, thyroid hormones and 

bile acids (7). In this context, we and others have shown that bile acids stimulate BAT activity 

in mice (8) and healthy humans (9), however, it is not known whether this approach is effective 

in human metabolic disease. Another approach to activate BAT involves activation of the beta-

adrenergic receptor via administration of agonists, like mirabegron. However, beta-

adregenergic stimulation at doses high enough to activate BAT also affect cardiac function by 

increasing heart rate and blood pressure, due to beta-adrenergic receptors in the heart (10). 

Therefore, other more specific and safer pharmacological strategies are warranted that 

stimulate BAT activity in humans that do not need to rely on the activation of the beta-

adrenergic receptor.  

 

NAD+ is an important mediator of cellular metabolism. NAD+ demand is high in order to carry 

out metabolic redox reactions yielding energy like glycolysis and oxidative phosphorylation. 

However besides these redox reactions, NAD+ is also consumed by NAD+-dependent enzymes 

like sirtuins, poly-ADP-ribose polymerases and cADP-ribose synthases (11). Low NAD+ is 

associated with ageing and decreased metabolic health (12), therefore increasing NAD+ 

concentrations is an interesting approach to boost metabolism. The vitamin B3 analogue 

nicotinamide ribose (NR) is a NAD+ precursor that increases activity of sirtuin (SIRT) 1 and 3 

(13). In vitro, NR boosts NAD+ levels (14) also resulting in elevated SIRT1/3 activity in vivo (13). 

In obesity models, NR protected high fat diet (HFD)-fed mice from weight gain and glucose 

intolerance (13,15). Furthermore, NR supplementation in various rodent models was able to 

counteract harmful effects of eg. brain damage (16), Alzheimer’s disease (17), autism 

spectrum disorder (18), age-related ovarian infertility (19), senescence (20) and muscular 

dystrophy through increased mitochondrial function (21).  

 

NR supplementation also stimulated mitochondrial biogenesis in muscle and BAT in a mouse 

model of mitochondrial myopathy (22). Interestingly, in mice NR safeguarded body 

temperature following a cold challenge (13) thus implicating the involvement of BAT due to 

the thermogenic properties of BAT. Combined these findings generated two additional 

questions: (1.) Is beta-adrenergic stimulated BAT metabolism altered in murine adipocytes 

and in cultured adipocytes derived from human BAT following NR? (2.) Does NR enhance cold-



 

  

stimulated BAT activity in humans? Therefore, we here assessed how NR affected BAT 

morphology in a in vivo HFD-fed mouse model. Since murine BAT is different from human BAT 

and the effect of NAD+ boosting on human BAT remain unclear, we also investigated the 

effects of NR on human BAT by using in vitro primary cultured adipocytes derived from human 

BAT biopsies. Finally, we performed a first human clinical trial in which we supplemented 

human volunteers with 1000 mg/day NR in order to examine the effects on in vivo BAT activity 

in humans. 

 

 

Materials and Methods  

 
Animal experiments 

Male C57BL/6J mice were purchased from Charles River Laboratories (Wilmington, MA) and 

were housed under a 14 hour light, 10 hour dark cycle at 21 °C and had ad libitum access to 

water and food throughout the experiment. From the age of 8 weeks, mice were split into 4 

groups of 10 animals. All animals received a high fat diet (D12492) for 4 weeks from Research 

Diets Inc. (New Brunswick, NJ). Half of animals were fed with pellets containing vehicle 

(double-distilled water; ddH20) or NR-supplemented by providing NR (400 mg/kg/day) for 4 

weeks as previously described (23). Mouse body weight was assessed weekly. Cold test was 

performed as described (24) in 7 animals on HF diet alone and in 7 animals receiving HF and 

NR. The rest of the animals was maintained at room temperature. In cold-test groups, mice 

were anesthetized with sodium pentobarbital after 6 hours of cold exposure (i.p. injection, 50 

mg/kg body weight). In the RT group, mice were anesthetized at the same time with sodium 

pentobarbital (i.p. injection, 50 mg/kg body weight). BAT was stored in 4% formaldehyde or 

used for lipolysis experiments. All animal experiments were carried according to national Swiss 

and European Union ethical guidelines and approved by the local animal experimentation 

committee of the Canton de Vaud under license #2868. 

 

Lipolysis assay 

Murine BAT was isolated and tissue explants were minced and incubated with lipolysis 

medium at 37 °C and 5% CO2. After 2 hours, media was collected and incubated for of 

5 minutes at 37 °C with free glycerol reagent from Sigma-Aldrich (St. Louis, MO). Following 

absorption was measured at 540 nm as previously described (25). In cultured adipocytes 

derived from human BAT and WAT, glycerol release was determined using the enzyChromTM 

adipolysis assay kit from BioAssay systems (Hayward, CA) according to the manufacturers 

instructions.  

 

  



 

  

Histology 

Murine BAT samples were fixed overnight in buffered 4% formaldehyde and embedded in 

paraffin. 5 μm thick serial sections were made from paraffin embedded tissue which were 

subsequently stained with hematoxylin and eosin (HE).  

 

Culture of human primary adipocytes 

The collection of BAT and WAT biopsies in patients was reviewed and approved by the ethics 

committee of Maastricht University Medical Center (METC 10-3-012, NL31367.068.10, 

NCT03111719). Isolation of the stromal vascular fraction and differentiation of cultured 

adipocytes derived from human BAT and WAT have been described previously (9). In short, 

collected cells from the stromal vascular fraction were grown to confluence. Differentiation 

was initiated by a cocktail containing biotin (33 μM), pantothenate (17 μM), insulin (100 nM), 

dexamethasone (100 nM), IBMX (250 μM), rosiglitazone (5 μM), T3 (2 nM) and transferrin (10 

μg/ml). Cells were transferred to maintenance medium consisting of biotin (33 μM), 

pantothenate (17 μM), insulin (100 nM), dexamethasone (10 nM), T3 (2 nM) and transferrin 

(10 μg/ml) until lipid-accumulating adipocytes had formed.  

 

Mitochondrial respiration 

Mitochondrial respiration in cultured adipocytes derived from human BAT and WAT has been 

described before (9). In short, adipocytes derived from human BAT and WAT were 

differentiated in XF96 well plates. Oxygen consumption rates were measured using the XF96 

extracellular flux analyzer from Seahorse Biosciences (North Billerica, MA). Cells were 

incubated for 1 hour at 37 °C in unbuffered DMEM (2 mM GlutaMAX, 1 mM sodium pyruvate 

and 25 mM glucose). Basal oxygen consumption was measured followed by injection of 2 μM 

oligomycin subsequently followed by injection of the compounds of interest (1 μM NE, 0.3 μM 

FCCP, 1 μM antimycin A+rotenone). When indicated cells were preincubated with NR for 24 

hours prior to the start of the experiment. Data is plotted as a percentage compared to 

uncoupled respiration following oligomycin. 

 

RNA isolation and gene expression analysis 

Total RNA was extracted from cultured adipocytes derived from human BAT and WAT using 

the miRNEasy kit from Qiagen (Hilden, Germany) according to the manufacturer. cDNA was 

created using the high capacity RNA-to-cDNA-kit from Applied Biosystems (Foster City, CA). 

Gene expression data was normalized to TATA box-binding protein (TBP) and further analyzed 

using the 2-ΔΔCt method. Primers for SIRT3 (Hs00953477_m1), SOD2 (Hs00167309_m1) and 

UCP1 (Hs00222453_m1) were from Applied Biosystems (Foster City, CA). SYBR-green qPCR 

primers for PGC1A: forward primer 5’-TGCTGAAGAGGGAAAGTGAGCGATTAGTTGA-3’, reverse 

primer 5’-AGGTGAAAGTGTAATACTGTTGGTTGA-3’; SIRT1: forward primer 5’-  

AGAGCCTCACATGCAAGCTCTAG-3’, reverse primer 5’- GCCAATCATAAGATGTTGCTGAAC-3’; 

TFAM: forward primer 5’- TTCCCAAGACTTCATTTCATTGTC-3’, reverse primer 5’- 

GATGATTCGGCTCAGGGAAA-3’. Primers for TBP have been described previously (26).  



 

  

 

Western blot analysis  

Protein was extracted using lysis buffer (50 mM Tris, 1 mM EDTA, 1% NP40, 5 mM 

nicotinamide, 1 mM sodium butyrate, 150 mM KCl, protease inhibitors [pH 7.4]). Proteins 

were separated by SDS-PAGE and transferred onto nitrocellulose membranes. Blocking and 

antibody incubations were performed in 5% BSA. Proteins were detected and quantified using 

the Odyssey from LI-COR Biosciences. Antibodies against OXPHOS were purchased from 

Abcam (Cambridge, United Kingdom). Beta-actin (A5316) was detected using an antibody 

from Sigma-Aldrich (St. Louis, MO). 

 

NAD+ determination  

NAD+ concentrations were determined using the enzyChromTM NAD+/NADH assay kit from 

BioAssay Systems (Hayward, CA) according to the manufacturers instructions.  
 

ATP determination 

ATP concentrations were determined using the CellTiter-Glo® Luminescent cell viability assay 

from Promega (Madison, WI) according to the manufacturer’s instructions.  

 

Clinical trials in humans  

The ethics committee of Maastricht University Medical Center approved the study protocol 

(METC 16-30-19, NL58119.068.16, NCT02835664) and all volunteers provided written 

informed consent. Eight healthy overweight and obese men and postmenopausal women 

were recruited. Inclusion criteria were 45-65 years of age, BMI 27-35 kg/m2, sedentary lifestyle 

(<3 h exercise per week), non-smoking for at least 6 months, no alcohol use of >2 servings per 

day, stable body weight for at least 6 months and no active diseases. A randomized controlled, 

double blinded, placebo controlled, cross-over study with NR supplementation was 

performed. Volunteers underwent 2 times a 6-week period with oral supplementation of 

either NR 1000 mg daily (NIAGEN, Chromadex) or placebo (capsules identical to NR in external 

appearance and number). Supplements were consumed with breakfast (500 mg) and lunch 

(500 mg). Measurements were performed on the last day of each supplementation period. 

Participants were fasted for at least 11 hours when entering the test facilities.  

For the determination of cold-induced BAT activity, volunteers were wrapped in a water-

perfused suit (ThermaWrap Universal 3166; MTRE Advanced Technologies Ltd., Yavne, Israel). 

First, volunteers remained at thermoneutral conditions (32 °C water) for 30 minutes, during 

which basal metabolic rate was measured by indirect calorimetry (IDEE, Maastricht 

Instruments, Maastricht, The Netherlands). Thereafter an individualized cooling procedure 

was started to determine (non-shivering thermogenesis) NST as described before (27). In brief, 

volunteers were cooled down in order to maximize NST after which energy expenditure was 

measured for 30 minutes. Following, 75 MBq of [18F]FDG was injected via the intravenous 

canula. Cold exposure was continued for 60 minutes, while volunteers were instructed to 

remain lying still. Next, the volunteers were unwrapped and underwent a static [18F]FDG-



 

  

PET/CT scan (Gemini TF PET-CT, Philips, The Netherlands). This consisted of a low-dose CT scan 

(120 kV, 30 mAs) followed by a PET scan. Six to seven bed positions (5 minutes per bed 

position) were used, to cover te area from the skull to the iliac crest. Tracer uptake was 

determined with the PET scan while the CT was used for attenuation correction and 

anatomical localization of the active BAT.  

The scans were analyzed with PMOD software (version 3.0; PMOD Technologies). The regions 

of interest were manually outlined, while a threshold of 1.5 SUV (standardized uptake value) 

and Hounsfield units between -10 en -180 were used, as described previously by our group 

(27). Additionally fixed volumes (10 mm by 10 mm) were placed in the cervical adipose tissue 

behind the clavicula to measure general uptake values as described before (28). BAT activity 

was expressed in SUV ([18F]FDG uptake (kBq/ml/ (injected dose (kBq/patient weight (g)). The 

activity was determined as average SUV (SUVmean) and as total SUV (SUVmean times the 

volume of interest).  

Statistics  

 

Two means were compared using student’s t-test, or with the Wilcoxon-signed rank test in 

case of non-parametric data. Comparison of multiple means was assessed by ANOVA. p<0.05 

was considered statistically significant. Data is expressed as mean ± SEM. Analyses were 

performed using Graph Pad Prism (San Diego, CA).  

 

 

Results 

 
NR combined with cold exposure decreases adipocyte cell size in murine BAT without 

affecting lipolysis 

NR supplementated mice were able to maintain a higher body temperature when faced with 

a a cold tolerance test (13) thus suggesting the involvement of BAT. Therefore, we here 

specifically investigated BAT by examining morphology and adipocyte cell size following NR 

supplementation and cold exposure (4 °C) in high fat diet-fed mice. As expected, acute cold 

decreased brown adipocyte cell size (Figure 1A and B). Brown adipocyte cell size also 

decreased following NR supplementation to HFD (Figure 1A and B). NR supplementation and 

cold combined resulted in the smallest adipocyte cell size (Figure 1A and B), thus potentially 

hinting towards increased lipolysis. In order to examine whether NR supplementation affected 

lipolysis in BAT in mouse, we performed ex vivo lipolysis experiments in mouse BAT harvested 

at room temperature and after acute cold exposure. At room temperature, supplementation 

of NR to a HFD did not alter lipolysis (Figure 1C). Also under conditions of acute cold exposure, 

supplementation of NR did not significantly change lipolysis in murine BAT (Figure 1C).  

  



 

  

 
Figure 1. NR supplementation alters adipocyte cell size in mouse BAT following a high fat diet. 
Mice were fed a high fat diet (HFD) or a high fat diet supplemented with NR (HFD+NR). 
Following the 4 week diet, animals were acutely exposed to cold (cold) or remained at room 
temperature (RT). A. HE staining of BAT. B. Cell size quantification of results obtained in panel 
A. *: p<0.05 (n=5-7). C. Ex vivo lipolysis was performed on BAT explants (n=2-3). Data is 
expressed as mean ± SEM.   

A 

C B 



 

  

NR stimulates NE-stimulated mitochondrial uncoupling only in adipocytes derived from 

human BAT  

To investigate if the positive effects of NR on BAT morphology in mouse can be translated to 

humans, we incubated cultured adipocytes derived from human BAT and WAT with 50 or 500 

µM NR to examine effects on NE-induced mitochondrial uncoupling. Whereas 50 µM NR did 

not increase NAD+ levels, 500 µM NR significantly increased NAD+ levels in adipocytes derived 

from human BAT and WAT (Figure 2A and B). Both doses of NR were without effect on ATP 

concentrations in adipocytes derived from human BAT or WAT (Figure 2C and D). To further 

investigate the effect on mitochondrial uncoupling in adipocytes derived from BAT and WAT, 

cultured adipocytes were treated with oligomycin to block ATPase and subsequently 

stimulated with NE. NE enhanced mitochondrial uncoupling in adipocytes derived from BAT, 

while this response was negligible in adipocytes derived from human WAT (Figure 2E and F). 

50 µM and 500 µM NR were unable to potentiate NE-stimulated mitochondrial uncoupling in 

WAT (Figure 2F and H). In human primary brown adipocytes however, 500 µM NR increased 

NE-stimulated mitochondrial uncoupling (Figure 2E and G), as well as maximal FCCP-induced 

mitochondrial respiration (Figure 2E and G). At 500 µM NR, antimycin A and rotenone resulted 

in higher OCR compared to 0 µM NR and 50 µM NR. 

 

NR does not affect lipolysis in cultured adipocytes derived from human BAT and WAT 

To investigate whether lipolysis plays a pivotal role in NR-stimulated mitochondrial uncoupling 

in human BAT cells, we examined lipolysis following NR treatment in cultured adipocytes 

derived from human BAT and WAT. Both basal and beta-adrenergic NE-stimulated lipolysis 

was unchanged following NR treatment in adipocytes derived from human BAT and WAT 

(Figure 2I and J). 
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Figure 2. NR stimulates mitochondrial uncoupling in cultured primary adipocytes derived from 
human BAT. NAD+ (A, B) and ATP (C, D) levels were determined in cultured adipocytes derived 
from human BAT or WAT after 24 hours with 0 µM, 50 µM or 500 µM NR. Data is expressed 
as a fold increase compared to 0 µM NR. Cellular respiration was measured using the Seahorse 
bioanalyzer in cultured adipocytes derived from human BAT (E) and WAT (F) following 24 hour 
incubation with 0 µM, 50 µM or 500 µM NR. Mitochondrial respiration was measured 
following injections with oligomycin, NE, FCCP and antimycin A+rotenone. G. Quantification 
of AUC from results in panel E. H. Quantification of AUC from results in panel F. NR does not 
alter lipolysis in cultured adipocytes derived from human BAT. Cultured adipocytes derived 
from human BAT (I) and WAT (J) were incubated for 24 hours with 0 µM, 50 µM or 500 µM 
NR. Following adipocytes were stimulated with NE in order to measure glycerol release as a 
marker of lipolysis. Data is expressed as mean ± SEM. *: p<0.05 (n=4-6) 
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NR does not alter SIRT-associated genes or OXPHOS protein expression in adipocytes 

derived from human BAT 

SIRTs are NAD+-dependent deacetylases and NR stimulates SIRT activity by increasing the level 

of its obligatory co-substrate NAD+ (29). Next we assessed whether NR was able to alter gene 

expression of SIRT-related pathways. Adipocytes derived from human BAT and WAT were 

incubated with vehicle, 50 µM NR or 500 µM NR. In cultured adipocytes derived from human 

WAT, 50 µM NR decreased PGC1A gene expression (Figure 3E) and 500 µM NR increased 

transcript levels of TFAM (Figure 3F) compared to vehicle. In cultured adipocytes derived from 

human BAT, NR did not significantly change the transcript levels of UCP1, SIRT3, SOD2, PGC1A 

or TFAM (Figure 3A-F). We also determined protein expression of OXPHOS by western blot 

analysis examining the individual complexes in adipocytes derived from human BAT and WAT. 

The highest concentration of 500 µM NR decreased the amount of complex I (Figure 3G) in 

adipocytes derived from human BAT, while 50 µM NR increased protein abundance of 

complex I in adipocytes derived from human WAT (Figure 3H).  

 



 

  

 

 
Figure 3. NR does not alter expression of SIRT targets in cultured primary adipocytes derived 
from human BAT. Cultured adipocytes derived from human BAT (black bars) and WAT (white 
bars) were stimulated for 24 hours with 0 µM (0), 50 µM (50) or 500 µM (500) NR. Gene 
expression of UCP1 (A), SIRT3 (B), SOD2 (C), SIRT1 (D), PGC1A (E) and TFAM (F) were 
determined using qPCR techniques. Cultured adipocytes derived from human BAT (G) and 
WAT (H) were stimulated for 24 hours with 0 µM (0), 50 µM (50) or 500 µM (500) NR. OXPHOS 
complexes were analyzed by Western blot. Data is expressed as mean ± SEM. *: p<0.05 
compared to matching control (n=4). 
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NR does not affect BAT activity or energy expenditure in human volunteers  
Our results show that NR can enhance BAT activity in human primary brown adipocytes. These 

promising results urged us to examine the true translational potential of NR on human BAT 

and therefore we performed a first double-blind placebo-controlled cross-over design clinical 

trial in a small cohort of volunteers with obesity. During 6 weeks, 1000 mg/day NR or placebo 

was supplemented. Cold-stimulated BAT activity was determined via uptake of [18F]FDG using 

PET-CT and whole body energy expenditure was also measured. However, NR 

supplementation for 6 weeks had no effect on [18F]FDG mediated glucose uptake accessed 

as SUVmean (Figure 4A) and SUVmax (Figure 4B) in fixed volumes. Cold exposure was able to 

significantly increase energy expenditure in human volunteers (Figure 4C and D). However the 

increase in energy expenditure following cold was similar in human volunteers receiving 

placebo or human volunteers receiving NR (Figure 4C and D). Also non-shivering 

thermogenesis was unchanged following NR supplementation (Figure 4E).  The respiratory 

quotient, reflecting substrate oxidation did lower during cold exposure, both in the placebo 

(from 0.81 to 0.79) and NR (from 0.79 to 0.78) supplementation periods. There was no 

significant difference between the hange in RQ value between these periods.  

  



 

  

 
Figure 4. NR does not stimulate energy expenditure or BAT activity in humans. Human 
volunteers were supplemented with 1000 mg/day NR for 6 weeks in a placebo-controlled 
cross over design. BAT SUV mean (A) and BAT SUV max in fixed volumes (B) following cold-
exposure. Energy expenditure at thermoneutrality and after cold exposure following placebo 
(C) or NR (D). Non-shivering thermogenesis (NST) following NR supplementation. Data is 
expressed as mean ± SEM. *: p<0.05 (n=9) 
  

  

 



 

  

Discussion 

 
Preclinical data has demonstrated that increasing NAD+ levels can counteract harmfull effects 

of metabolic disease, and NR supplementation is a powerful intervention to do so. Here, we 

specifically assessed the effect of NR, on mouse BAT morphology and on adipocytes derived 

from human BAT and WAT in vitro and in vivo in human volunteers. In mice, NR 

supplementation combined with beta-adrenergic cold-exposure decreased brown adipocyte 

cell size (Figure 1). Similarly, in cultured adipocytes derived from human BAT, elevating NAD+ 

levels via NR enhanced beta-adrenergic NE-mediated mitochondrial uncoupling (Figure 2). 

This stimulatory effect was specific for adipocytes derived from human BAT, which is in line 

with earlier observation in animals where NAD+ supplemention increased NAD+ 

concentrations in BAT and stimulated BAT metabolism following a cold challenge (13). 

However, 6 weeks of supplementation with 1000 mg/day NR did not increase cold-stimulated 

BAT activity in humans. These observations together show that NR and beta-adrenergic 

signaling can work together to enhance BAT activity, however the current dose of NR was 

unable to increase BAT activity in humans. 

 

We examined lipolysis ex vivo in murine BAT and in vitro in human BAT in the context of NR 

stimulation. There are obvious differences when comparing murine adipose tissue explants to 

in vitro differentiated human adipocytes. However, in vitro lipolysis in adipocytes derived from 

human BAT was unaltered following NR (Figure 2I) and also ex vivo lipolysis in mouse BAT 

following NR exposure was unaffected (Figure 1C). This indicates that the direct mode of 

action of NR is most likely independent of lipolysis in mice and humans, however further 

measures of intracellular lipolysis should be explored. A strong link has been suggested 

between BAT and WAT as BAT volumes correlate with whole body lipolysis (30) which is mostly 

mediated by WAT. In our study we were unable to assess WAT metabolism in human 

volunteers, however this could provide explanations in the future why we were unable to 

detect an increase in BAT activity in human volunteers. Previously, it has been reported that 

NR increases NAD+ content in cells and mitochondria (13) and mitochondria are pivotal players 

in providing energy for lipolysis. In line with unaltered lipolysis in human and murine BAT, we 

also observed no change in OXPHOS protein, ATP levels or gene expression related to 

mitochondrial biogenesis in cultured adipocytes derived from human BAT.  

 

mRNA abundance of the classical mitochondrial marker for BAT, UCP1, was unchanged 

following NR treatment in cultured adipocytes derived from human BAT. However, when it 

comes to UCP1 expression and NR, different results have been obtained depending on the 

experimental setup. In young lean mice on a chow diet supplemented for 5 weeks with NR, 

UCP1 protein content was increased in BAT, however, in this study there was no mention of 

total BAT mass (31). In another study, NR was administered directly after birth in mice which 

was subsequently followed by a HFD-challenge for 10 weeks. UCP1 mRNA expression was 

unaffected in animals on a HFD in BAT, but interestingly the animals on a control diet showed 



 

  

decreased expression of UCP1 mRNA expression following NR in BAT (32). These findings 

together indicate that gene and/or protein expression alone might not be the best indicator 

for BAT metabolic activity thus therefore we purposely included metabolic readouts for BAT 

activity in vitro and in vivo. Next to UCP1-dependent pathways, several UCP1-independent 

pathways have been described. First UCP1-independent pathway revolves around insulin. 

Beta-adrenergic cold stimulation triggers insulin release resulting in lipolysis in order to refuel 

the activated BAT in mice (33) however whether this mechanism is present in humans 

warrants further investigation. Second UCP1-independent pathways is based on calcium 

cycling. Specifically in beige adipocytes calcium cycling is regulated through SERCA2B and RYR2 

(34) resulting in fuel for thermogenesis. The third UCP1-independent driven pathway is 

creatine-dependent ADP/ATP substrate cycling (35) resulting in increased thermogenesis. 

These UCP1-independent pathways can be of importance when examining human NR-

stimulated (in vitro) BAT activity, especially since human BAT resembles murine beige adipose 

tissue (26,36).  

 

Stimulating BAT activity by other means than cold in humans could have beneficial effects on 

whole body metabolism. Human BAT activity shows a negative correlation with obesity (4,37), 

and stimulation of BAT activity through cold acclimatization increases energy expenditure that 

potentially could lead to loss of fat mass (38). Furthermore, cold-induced BAT activity is related 

to increased insulin sensitivity in humans (39,40). Cold exposure is the most effective method 

to stimulate BAT activity; however, not the most practical one. Therefore, alternative routes 

to stimulate BAT in humans are warranted. In the current study, NR was able to stimulate BAT 

activity in human primary brown adipocytes. However, we could not confirm these results in 

a clinical trial in humans which is in line with other clinical trials using NR (41-43). The reason 

why NR had beneficial effects in human primary brown adipocytes but not in vivo in humans, 

can not be deduced from the current study. Based on our research, 6 weeks of NR 

supplementation in healthy volunteers with obesity did not increase NAD or mitochondrial 

function in skeletal muscle, however the NAD+ metabolites nicotinic acid adenine dinucleotide 

and methylnicotinamide were increased thus demonstrating enhanced NAD+ metabolism 

following NR (44). SIRTs are targets for NR/NAD+, however metabolic disease can alter SIRT 

expression. For example, NAFLD is associated with lower SIRT expression in human liver (45) 

and obesity is associated with lower SIRT expression in human WAT (46). This could potentially 

mean that higher concentrations or longer duration of NR supplementation are needed when 

examining a human cohort with obesity to see beneficial effects on human BAT. In the future, 

translational research will be crucial when employing other NAD+ boosting strategies (eg. 

nicotinamide mononucleotide (47) and dihydronicotinamide riboside (48)) to increase BAT 

activity. Therefore, further translational research is needed in order to better understand the 

differences in NAD+ metabolism between mouse and man and in vitro and in vivo.  
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Chapter 4 

Non-shivering cold acclimation does not improve 
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Abstract   

 
Background & Aims 

Type 2 diabetes is a major health problem and is accompanied with increased cardiovascular 

disease risk. We showed that ten days of cold acclimation with non-shivering thermogenesis 

(NST) improved skeletal muscle insulin sensitivity in type 2 diabetes. Here, we aimed to 

investigate whether cold acclimation with NST beneficially affected postprandial metabolism 

and cardiovascular risk markers, and if the effect on insulin sensitivity was sustained for a 

longer time.  

 

Materials & Methods 

Nine obese participants diagnosed with non-insulin dependent type 2 diabetes were exposed 

to mild cold (16-17 C) for ten days. Before and immediately after the cold exposure 

postprandial glucose and lipid metabolism, vascular function measurements, insulin 

sensitivity and intrahepatic lipid content were determined. Furthermore skeletal muscle 

biopsies were obtained. Lastly, insulin sensitivity was measured again ten days later after 

acclimation to assess the sustained effect of cold acclimation. 

 

Results 

Based on direct observations, questionnaire results and gene expression analyses in muscle 

biopsies, no shivering occured during the ten-day cold acclimation. Cold acclimation with NST 

had no effect on postprandial glucose and lipid metabolism, intrahepatic lipid content or other 

vascular function markers. Surprisingly, insulin sensitivity was unaffected both when 

measured directly (one day) or ten days after the last cold exposure.  

 

Conclusion 

A ten-day cold acclimation period at 16-17 °C under non-shivering conditions resulted in mild 

effects on substrate oxidation and cardiovascular risk markers. The lack of marked effects in 

the current study may be attributed to the absence of shivering compared to previous studies. 

  



 

  

Introduction 

 
Mortality rates in type 2 diabetes mellitus (T2DM) patients are approximately twice as high 

compared to individuals without T2DM and can mostly be attributed to an increased risk of 

coronary heart diseases (1, 2). In the last decade, cold exposure as a tool to alleviate insulin 

resistance has attracted lots of scientific interest. Nowadays, there is little demand for the 

human body to adjust to colder temperatures, since humans nowadays spend most of their 

time in a well-controlled indoor environment with optimal temperatures within the body’s 

thermoneutral zone. The physiological reaction of the human body to cold exposure includes 

simultaneously 1) insulative responses by peripheral vasoconstriction and 2) an increase in 

metabolic rate by shivering thermogenesis (ST) and/or non-shivering thermogenesis (NST). It 

has been shown that during daily cold exposure in humans, shivering gradually decreases 

within 10-20 days, while the related increase in metabolic rate remains at a stable level (3-5). 

This indicates that acclimation to cold occurs and that ST can be replaced by NST. Both brown 

adipose tissue (BAT) (6-9) and skeletal muscle (4, 10) have been identified as contributors to 

NST. 

 

Cold acclimation has been shown to promote insulin sensitivity in humans, originally 

attributed to increased BAT activity (11, 12). Research performed within our group, however, 

has shown that ten days of cold acclimation (14-15 C) markedly improved skeletal muscle 

insulin sensitivity by 43% in patients with type 2 diabetes (13), an improvement that is 

comparable to the effect seen after long term exercise training (14). Interestingly, the cold 

induced improvement of insulin sensitivity did not originate form BAT activation but was 

associated with increased GLUT4 translocation in skeletal muscle (13).  

 

Cold exposure may also impact other aspects of metabolic health, such as postprandial 

metabolism. Besides hyperglycemia, dyslipidemia is a common metabolic abnormality in 

patients with T2DM (15). Interestingly, animal studies have shown reduced postprandial lipids 

upon prolonged cold exposure (16). Moreover, a postprandial reduction in 

hypertriglyceridaemia in human individuals was associated with BAT (17). Lowering 

postprandial hyperglycemia and hypertriglyceridemia is clinically relevant as high plasma 

glucose and triglyeride levels can cause damage to the vascular wall inducing an impaired 

vascular function (18), which causes artherosclerotic plaque development that may ultimately 

lead cardiovascular disease events. However, the effect of cold exposure on these 

cardiovascular risk markers has not yet been investigated in humans.   

 

Therefore, we primarily aimed to investigate the effect of ten days of cold acclimation with 

NST in overweight and obese patients with T2DM on postprandial glucose and lipid 

metabolism and cardiovascular risk markers. Secondly, we investigated whether a ten-day 

cold acclimation period with NST affects insulin sensitivity, and if so, if this effect is sustained 



 

  

for another ten days at room temperature. Given the previous results on skeletal muscle (13), 

we also aimed to test the hypothesis that beneficial effects of cold exposure can be truly 

achieved by stimulating NST, and hence took specific care to prevent shivering in our 

participants. 

 

 

Results 

 
Subject characteristics 

Nine obese men and women (age 65 ± 5 years; BMI 32.1 ± 2.8 kg/m2; four women) participated 

in the study (see Table 1). In line with the inclusion criteria, participants were diagnosed for at 

least one year with type 2 diabetes, and were treated with oral medication only (see 

Supplementary Table 1). Participants were non-smokers, had no other active diseases and had 

a sedentary lifestyle according to the Baecke questionnaire score (7.94 ± 2.00, Table 1). 

 

Table 1. Participant characteristics 

Parameter Mean ± SD 

Gender F/M 4/5 

Age (years) 65 ± 5 

Body weight (kg)   93.7 ± 17.3   

Height (m) 1.70 ± 0.10 

BMI (kg/m2) 32.1 ± 2.8 

HbA1c (%) 7.3 ± 0.7 

TG (mmol/L) 1.54 ± 0.34 

ASAT (U/L) 24 ± 8 

ALAT (U/L) 37 ± 19 

GGT (U/L) 34 ± 13 

eGFR (ml/min/1.73mm2) 79 ± 9 

Physical activity level (Baecke score) 7.51 ± 1.16 

Abbreviations: BMI, body mass index; HbA1c, hemoglobin A1c; TG, triglycerides; ASAT, 
aspartate aminotransferase; ALAT, alanine aminotransferase; GGT, gamma-glutamyl 
transferase; eGFR, estimated glomerular filtration rate according CKD-EPI method. 
  



 

  

Supplementary table 1. Subject characteristics regarding diabetes 

Participant Diabetes duration (years) Diabetes medication 

1 15 Metformin 850mg, 3x/day 

Gliclazide 80mg, 2x/day 

2 14 Metformin 500mg, 2x/day 

3 15 Metformin 1000mg, 2x/day 

Gliclazide 30mg, 2x/day 

4 6 Metformin 1000mg, 3x/day 

5 8 Metformin 850mg 1x/day 

Glimepiride 2mg, 1x/day 

Liraglutide 6mg, 18eh, 1x/day 

6 5 Metformin 850mg, 2x/day 

7 9 Metformin 500mg, 2x/day 

8 7 Metformin 500mg, 3x/day 

Gliclazide 30mg, 1x/day 

9 1 Gliclazide 80mg, 1x/day 

 

 

Body and room temperature, thermal comfort and shivering during cold acclimation 

Room temperature during cold acclimation was on average 16.4 ± 0.30 °C, which was 

approximately 1.4 °C higher compared to the previous study by Hanssen et al (13). Average 

skin temperature dropped from 27.5 ± 0.33 °C to 26.3 ± 0.97 °C during day 3. This was similar 

to the drop in average skin temperature from 27.4 ± 0.80 °C to 26.4 ± 1.26 °C on day 10. 

Thermal sensation and thermal comfort, assessed via VAS scales, was not significantly 

different between day 3 and day 10 of cold acclimation, as shown in Supplementary Figure 1. 

The temperature was progressively perceived colder and more uncomfortable over time. The 

shivering questionnaires revealed that participants experienced no shivering and only 

occasionally reported tense muscles. Self-reported shivering intensity was less than described 

in the study from Hanssen et al (13) and were not significant different between day 3 and day 

10 of cold acclimation (Figure 6A).  

  



 

  

 
Figure 1. Subjective responses to cold acclimation  
Self-reported thermal sensation (A) and thermal comfort (B) measured with VAS scales at 
selected timepoints (from t=0 min until t=360 min) during day 3 and day 10 of the cold 
acclimation period, shown as AUC. Data are expressed as mean ± SE. n=9. Data was analyzed 
with a Wilcoxon matched-pairs signed rank test.  
  



 

  

Postprandial metabolism and substrate kinetics  

Meal test total area-under-the-curve values (AUC) for glucose, insulin and triglycerides were 

not significantly different before and after cold acclimation (p=0.43, p=0.65 and p=0.50 

respectively, Figure 2A-C and Supplementary Table 4). In addition, no significant differences 

were observed in AUC when the 1st or 2nd meal of the meal test were analysed separately 

(Supplementary Table 4). Area under the curve for plasma free fatty acids was also not 

significantly different before and after ten days of cold acclimation (p= 0.16, Figure 2D and 

Supplementary Table 4). However, when the 1st and 2nd meal of the meal test were analysed 

separately, the total AUC for FFA during the 1st meal was significantly lower after cold 

acclimation (pre: 94228 ± 5115 mmol/l; post: 86014 ± 4545 mmol/l, p=0.039) as shown in 

Supplementary Table 4.  

 

Total energy expenditure during the meal tests, calculated as AUC, was significantly higher 

after the cold acclimation (pre: 2620 ± 146; post: 2752 ± 168 kJ, p=0.03, Figure 3A and 

Supplementary Table 4). Although this elevated energy expenditure seemed to be mainly due 

to higher glucose oxidation, the differences in glucose and fat oxidation during the meal tests 

were not statistical significant (p=0.44 and p>0.99 respectively, Figure 3B-C, Supplementary 

Table 4).  

 

The results of the meal test suggest that cold acclimation may increase energy expenditure, 

probably due to higher carbohydrate oxidation. To further test this, we analysed substrate 

oxidation measured in the morning of the clamps. Overnight fasted energy expenditure at the 

start of the clamp (baseline) was not affected by cold acclimation (Supplementary Table 3). 

However, energy expenditure during the high insulin phase was significantly higher after cold 

acclimation compared to before (pre 4.67 ± 0.30 vs. post 4.89 ± 0.27 kJ/min, p=0.03) and this 

elevation tended to return to pre-intervention levels on the longterm (post 4.89 ± 0.27 vs. 

long term 4.67 ± 0.18 kJ/min, p=0.10, Supplementary Table 3). Carbohydrate oxidation after 

an overnight fast was significantly higher after ten days of cold acclimation compared to 

before (pre 3.76 ± 0.47 vs. post 4.97 ± 0.68 mol/kg/min, p<0.01, Supplementary Table 3). In 

addition, fat oxidation after an overnight fast was significantly lower directly after cold 

acclimation compared to before (pre 3.80 ± 0.17 vs. post 3.57 ± 0.17 mol/kg/min, p<0.01, 

Supplementary Table 3). These effects on carbohydrate and fat oxidation did not sustain on 

the long term (Supplementary Table 3). The changes in substrate oxidation after cold 

acclimation were not observed during insulin infusion (Supplementary Table 3). 

 

There was no significant difference after cold acclimation for baseline HDL (pre 1.12 ± 0.12 vs. 

post 1.21 ± 0.08 mmol/l, p=0.16), LDL (pre 1.80 ± 0.24 vs. post 1.84 ± 0.24 mmol/l, p=0.82) or 

total cholesterol (pre 3.57 ± 0.31 vs. post 3.76 ± 0.31 mmol/l, p=0.16) 

  



 

  

 

  
Figure 2. Plasma levels during the meal tests 
A: plasma levels of glucose presented, B: Insulin, C: Triglycerides  and D: Free fatty acids during 
the meal test. Pre cold acclimation is presented as the red line, post cold acclimation as the 
blue line. Dashed vertical lines indicate the time of consumption of the 1st shake at T0 and the 
2nd shake at T240. n=9. Data was analyzed with a Wilcoxon matched-pairs signed rank test. 
Data is presented as mean ± SE.  
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Figure 3. Energy expenditure and substrate oxidation during the meal tests  
A: Energy expenditure, B: Carbohydrate oxidation (CHox), and C: Fatty acid oxidation (FAox) 
during the meal test . Pre cold acclimation is presented as the red line, post acclimation as 
the blue line. Dashed vertical lines indicate the time of consumption of the 1st shake at T0 
and the 2nd shake at T240. n=9. Data was analyzed with a Wilcoxon matched-pairs signed 
rank test. Data is presented as mean ± SE. 
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 Table 3. Plasma levels and substrate kinetics measured during the clamps  

 Clamp pre Clamp post Clamp longterm p-value 

Plasma Glucose (mmol/l) 

     Baseline 7.77 ± 0.54 7.98 ± 0.45 7.91 ± 0.54 0.99 

     Low insulin 5.99 ± 0.25 5.78 ± 0.31 5.63 ± 0.17 0.21 

     High insulin 5.21 ± 0.12 5.11 ± 0.11 5.04 ± 0.08 0.69 

Plasma Insulin (mU/l) 

     Baseline 6.32 ± 1.992 6.99 ± 1.48 6.56 ± 1.71 0.69 

     Low insulin 14.09 ± 1.87 12.64 ± 1.56 12.62 ± 0.88 0.57 

     High insulin 62.50 ± 3.24C 59.34 ± 4.13  56.03 ± 2.68C 0.02* 

Energy expenditure (kJ/min) 

     Baseline 4.82 ± 0.25 4.91 ± 0.27 4.86 ± 0.20 0.79 

     Low insulin 4.86 ± 0.34 4.92 ± 0.28 4.75 ± 0.24 0.24 

     High insulin 4.67 ± 0.30B 4.89 ± 0.27B,D 4.67 ± 0.18D 0.02* 

Carbohydrate oxidation  (mol/kg/min) 

     Baseline 3.76 ± 0.47A 4.97 ± 0.68A 4.68 ± 0.68 <0.01** 

     Low insulin 7.27 ± 0.79 7.83 ± 0.84 7.15 ± 0.77 0.79 

     High insulin 10.36 ± 1.15 11.07 ± 1.21 9.73 ± 1.41 0.30 

Fatty acid oxidation  (mol/kg/min) 

     Baseline 3.80 ± 0.17A 3.57 ± 0.17A,D 3.71 ± 0.19D <0.01** 

     Low insulin 2.81 ± 0.23 2.86 ± 0.24 2.96 ± 0.16 0.87 

     High insulin 2.14 ± 0.24 2.16 ± 0.21 2.39 ± 0.26 0.99 

Abbreviations: Ra, rate of appearance; Rd, rate of disappearance; Si, whole body insulin 
sensitivity; EGP, endogenous glucose production; NOGD, non-oxidative glucose disposal; FFA, 
free fatty acids. 
Data are expressed as mean ± SE. n=9. Data was analyzed with a Friedman test. **p<0.01, 
*p<0.05, Asignificant difference (p<0.01) between Clamp pre and Clamp post, Bsignificant 
difference (p<0.05) between Clamp pre and Clamp post, Csignificant difference (p<0.05) 
between Clamp pre and Clamp post, Dtrend in difference (p<0.10) between Clamp post and 
Clamp longterm. 
  



 

  

  Table 4. Plasma levels and substrate kinetics measured during the meal tests     

 Meal test pre Meal test post p-value 

Plasma Glucose     

     AUC 4433 ± 236 4285 ± 170 0.43 

     iAUC 860 ± 171 747 ± 159 0.25 

Plasma Insulin     

     AUC 15826 ± 1550 15640 ± 1458 0.65 

     iAUC 9457 ± 1097 9060 ± 1119 0.36 

Plasma Triglycerides    

     AUC 1339 ± 109 1411 ± 123 0.50 

     iAUC 655 ± 89 664 ± 67 0.36 

Plasma Free fatty acids    

     AUC 214852 ± 9104 202701 ± 10011 0.16 

     iAUC 13182 ± 6077 23031 ± 7650 0.20 

     AUC first meal 94228 ± 5115 86014 ± 4545 0.04* 

     AUC second meal 120624 ± 5448 106486 ± 11976 0.30 

AUC Energy expenditure    

     AUC 2620 ± 145 2752 ± 168 0.03* 

     iAUC 316 ± 37 355 ± 22 0.69 

AUC Carbohydrate oxidation     

     AUC 3328 ± 371 3866 ± 550 0.44 

     iAUC 726 ± 152 998 ± 103 0.22 

AUC Fatty acid oxidation    

     AUC 1688 ± 92 1667 ± 78 >0.99 

     iAUC 611 ± 159 526 ± 63 0.94 

Abbreviations: AUC, area under the curve; iAUC, incremental area under the curve. 
Data are expressed as mean ± SE, n=9. Data was analyzed with a Mann-Whitney test.  *p<0.05 
  



 

  

Vascular function 

AIxHR75, an indirect marker of arterial stiffness, was significantly improved after ten days of 

cold acclimation measured in the overnight fasted state (pre T0 22.57 ± 1.36 % vs. post T0 

19.84 ± 1.96 %, p=0.03, Figure 4A). Before cold acclimation, AIxHR75 tended to decrease upon 

the first meal ingestion (T120) and this meal-induced effect became significant after the 

second meal (T300). No statistically significant meal-effects on AIxHR75 were observed after 

cold acclimation (pre T120 15.63 ± 2.80 % vs. post T120 18.26 ± 1.67 % p=0.50 and pre T300 

14.94 ± 2.55 % vs. post T300 16.33 ± 2.70 % p=0.82, Figure 4A). Postprandial changes in 

AIxHR75 were also not significant different before and after cold acclimation (pre delta 120 -

6.94 ± 2.31 vs. post delta 120 -1.58 ± 1.96, p=0.16, pre delta 300 -7.63 ± 1.83 vs. post delta 

300 -3.51 ± 1.91, p=0.30, Figure 4B). 

 

The current non-invasive gold standard technique to measure arterial stiffness (PWVc-f), was 

however not affected by cold acclimation in the overnight fasted state PWVc-f (pre T0 12.36 ± 

0.61 vs. post T0 11.99 ± 0.57, p=0.36, Figure 4C). As expected, no meal-induced effects were 

observed (see Figure 4D).  

 

Finally, ten days of cold acclimation did not significantly affect fasting retinal vessel diameter, 

as the arteriolar width (pre 120.83 ± 7.48 m vs. post 120.52 ± 7.89 m, p=0.95), venular width 

(pre 209.19 ± 10.73 m vs. post 207.17 ± 10.07 m, p=0.23) and the arteriolar-to-venular ratio 

(pre 0.58 ± 0.02 vs. post 0.58 ± 0.02, p=0.84, Figure 4E) did not change. 

  



 

  

 
 

 
 

 
 

Figure 4. Vascular function markers 
A: Aortic augmentation index (AIxHR75) at timepoints T0, T120, T300. B: AIxHR75 delta’s T0-
120 and T0-300 expressed as percentage points. C: Pulse wave velocity (PWVc-f) at timepoints 
T0, T120, T300 (n=8 at T300). D: PWVc-f delta’s T0-120 and T0-300 (n=8 at delta T0-300). E: 
Arteriolar-to-venular ratio of the retinal vessels in the right eye (n=8). Black bars represent 
data from the meal test before cold acclimation, grey bars represent data from the meal test 
after cold acclimation. Data was analyzed with a Wilcoxon matched-pairs signed rank test. 
Data shown are shown as mean ± SE. *p<0.05, #p<0.10.  

T0 T120 T300 T0 T120 T300
0

10

20

30
A

Ix
H

R
7

5
 (
%

)
*

#

*

pre post

A

Δ 120 Δ 300 Δ 120 Δ 300
-12

-10

-8

-6

-4

-2

0

A
Ix

H
R

7
5

 (
p

.p
.)

pre post

B

T0 T120 T300 T0 T120 T300
0

5

10

15

20

P
W

V
c
-f
 (
m

/s
)

pre post

C

Δ 120 Δ 300 Δ 120 Δ 300
-1

0

1

2

3

P
W

V
c
-f
 (
m

/s
)

pre post

D

Pre Post
0.0

0.2

0.4

0.6

0.8

A
rt

e
ri

o
la

r-
to

-v
e

n
u

la
r 

ra
ti
o

E



 

  

Liver fat content 
As we hypothesized that cold acclimation could affect postprandial lipid metabolism, we also 

investigated if cold acclimation affects liver fat content. However, liver fat content was not 

different before and directly after cold acclimation (pre 6.1 ± 4.3 vs. post 7.0 ± 4.0 %, p=0.22, 

n=8, Figure 5D). 

 

Insulin sensitivity 

We previously demonstrated that cold acclimation improved insulin sensitivity when 

measured directly after ten days of cold acclimation. Here, we aimed to investigate if this 

increase in insulin sensitivity would be sustained for ten days after cessation of the cold 

acclimation intervention. Plasma insulin levels during the high insulin phase of the clamp were 

significantly different between test days (p=0.02) with significantly higher values directly after 

the cold acclimation compared to before cold acclimation (p=0.02, Supplementary Table 3), 

and therefore we calculated Si as a measure of insulin sensitivity. However, whole body insulin 

stimulated glucose uptake (Rd glucose high insulin minus baseline) corrected for plasma 

insulin levels (Si), was not different before and directly after cold acclimation nor on the 

longterm (p=0.53, Figure 5A). Hepatic insulin sensitivity during the low insulin phase was also 

not affected by cold acclimation (p=0.28, Figure 5B), however during the high insulin phase, 

EGP suppression was significantly lower directly after cold acclimation compared to before 

and on the longterm (pre 88.06 ± 7.00 % vs. post 77.60 ± 7.45 % vs. longterm 88.39 ± 3.44 %, 

p=0.04). HbA1c, a marker of long term glucose homeostasis, was not different before cold 

acclimation compared to two months after cold acclimation (pre 7.3 ± 0.3 % vs. two months 

later 7.2 ± 0.3 %, p=0.71, Figure 5C). 

  



 

  

 
 

 
    

Figure 5. Insulin sensitivity and intrahepatic lipid content 
A: Whole body insulin sensitivity. B: Suppression of hepatic endogenous glucose production. 
C: HbA1c before the cold acclimation and 2 months after the cold acclimation. D: Intrahepatic 
lipid content.  
Black bars represent before cold acclimation, grey bars represent directly after cold 
acclimation, white bars represent ten days after the cold acclimation, dashed bar represents 
two months after the cold acclimation. n=9. Data was analyzed with a Friedman test for Si and 
EGP. Data was analyzed with a Wilcoxon matched-pairs signed rank test for HbA1c and 
intrahepatic lipid content. Data are shown as mean ± SE.  
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Skeletal muscle GLUT4 translocation 

The lack of effect of cold induced non-shivering thermogenesis on insulin sensitivity contrasts 

our previous study, in which we found that the increased insulin sensitivity was due to 

enhanced GLUT4 translocation in skeletal muscle (13). Consistent with a lack of effect of cold 

induced NST on insulin sensitivity, GLUT4 intensity at the membrane measured in muscle 

biopsies taken in the non-insulin stimulated condition, was also not affected by cold induced 

NST (pre 27.37 ± 3.05 vs. post 27.63 ± 2.28 vs. longterm 27.61 ± 3.30 A.U., p=0.77, n=7, Figure 

6B). Cytosolic GLUT4 intensity was not changed either (pre 20.21 ± 1.89 vs. post 20.71 ± 1.33 

vs. long term 20.46 ± 1.90 A.U., p=0.96). 

 

Skeletal muscle shivering markers 

Because we could not replicate our previously reported positive effects of cold acclimation on 

insulin sensitivity and GLUT4 translocation (13), we decided to investigate if the absence of 

shivering in the current study could underly this phenomenon. Compared to our previous 

study (13), we see a distinct lack of self-reported shivering, as can be seen in Figure 6A. To 

further test the hypothesis that lack of shivering/muscle contraction in the current study may 

underly the lack of beneficial effects on insulin sensitivity, we measured mRNA expression of 

genes based on microarray analysis from our previous cold acclimation study (13) and an 

exercise intervention study (14). We have selected genes related to muscle contraction and 

the extracellular matrix (unpublished data) that demonstrate the importance of muscle 

contraction on peripheral insulin sensitivity in the cold acclimation study performed by 

Hanssen et al (13). Based on the heatmap there is a clear upregulation of the selected genes 

in original cold acclimation cohort from Hanssen et al, while such an upregulation was not 

observed in the current study (Figure 6C). In more detail, smooth muscle actin (ACTC1), the 

alpha and delta subunit of muscle acetylcholine receptor (CHRNA1, CHRND), alpha-1 type-1 

collagen (COL1A1), skeletal muscle myosin heavy chain 3 (MYH3) and myosin binding protein 

H (MYBPH) were higher in the cold acclimation study of Hanssen et al. compared to our 

current study. Also coiled coil domain containing protein 80 (CCDC80) and immunogloblulin-

like and fibronectin type III domains-containing protein 1 (IGFN1) showed tendancies to be 

increased in the cold acclimation study from Hanssen et al. compared to our current study.  
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Figure 6. Skeletal muscle shivering markers 
A: Self-reported shivering measured with VAS scales at selected timepoints (from T=0 minutes 
until T=360 minutes) during day 3 and day 10 of the cold acclimation period, shown as AUC. 
The dashed line indicates the self-reported shivering AUC from Hanssen et al. (13) at day 3  B: 
GLUT4 intensity at the skeletal muscle membrane, expressed as arbitrary units (A.U.). C: 
Relative gene expression analysis in skeletal muscle biopsy samples obtained from the current 
study (Remie et al.) (n=9) and from Hanssen et al. (13) (n=7) before and after cold acclimation. 
qPCR data is expressed as heatmap. Amplification failed for one sample and has been 
identified by “x” in the heat map. Data was analyzed with a Wilcoxon matched-pairs signed 
rank test for shivering. Data was analyzed with a Friedman test for GLUT4. Data was analyzed 
with a Mann-Whitney test for relative gene expression. Data are shown as mean ± SE. *p<0.05, 
#p<0.10. 
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Discussion 

 
Previous studies investigating cold acclimation in humans have shown a potential to treat 

obesity and T2DM via an increase in energy expenditure (4-7, 12, 13, 20-22) and insulin 

sensitivity (13), acting through NST in brown adipose tissue and skeletal muscle. Therefore we 

hypothesized that cold acclimation with NST could also be beneficial for postprandial 

metabolism and reduce cardiovascular risk. To this end, we primarily investigated the effects 

of ten-day cold acclimation without shivering on cardiovascular risk markers, including 

postprandial glucose and lipid metabolism and markers for arterial stiffness. Moreover, we 

investigated the long-term effects of cold acclimation without shivering on insulin sensitivity.  

 

Acute cold exposure with and without shivering has frequently been shown to increase energy 

expenditure, reported as an increase in basal metabolic rate (4, 5, 10, 11, 21-26). Yet, 

consistent with other previous reports (4, 6, 7, 12, 13, 20, 22, 27), we did not observe an 

increase in basal metabolic rate, measured under thermoneutral conditions after cold 

acclimation with NST. However, our results show a change in fasting substrate selection after 

cold acclimation with NST, with a decrease in fat oxidation and an increase in carbohydrate 

oxidation. Furthermore, as also reported before (12), postprandial energy expenditure, which 

reflects diet induced thermogenesis, was higher in the meal test after cold acclimation 

compared to the meal test prior cold acclimation. Other evidence suggests that acute cold 

exposure (5, 11, 16, 23, 25), but not cold acclimation (5), increases glucose oxidation, fat 

oxidation and lipid clearance. In agreement with previous work (5, 26), we did not observe 

changes in fasting plasma lipid levels, postprandial substrate oxidation or postprandial 

triglyceride response. We only observed a small, albeit significant decrease in plasma fatty 

acid levels during the first step of the meal test after cold acclimation. Furthermore, no effects 

of cold acclimation with NST were observed on fasted plasma glucose and insulin levels, 

consistent with findings after acute cold exposure (26). These results indicate that cold 

acclimation under non-shivering conditions only had marginal effects on postprandial glucose 

and lipid metabolism.  

 

Furthermore, we observed a significant improvement in the augmentation index, indicating 

an indirect reduction in arterial stiffness. However, we did not see any change in PWVc-f. This 

indicates that the effects of ten days of cold acclimation with NST might only affect peripheral 

resistance arteries and not stiffness of the large elastic arteries, such as the aorta. It is likely 

that the study period of ten days was too short to induced pronounced effects on arterial 

vessel wall properties. Alternatively, cold exposure can increase blood pressure – a main 

determinant of the PWVc-f – through vasoconstriction (28), and an increased blood pressure 

during cold exposure could mitigate potential beneficial effects that could be expected from 

the cold acclimation.  

 



 

  

We previously showed marked effects of cold acclimation on insulin sensitivity in T2DM 

patients (13). Here we aimed to investigate if these effects would be retained for a longer 

period of time after the last cold exposure under non-shivering conditions. Thus, we 

performed a hyperinsulinemic euglycemic clamp before cold acclimation, directly (one day) 

after cold acclimation and ten days after the last cold exposure. Surprisingly, we could not 

replicate the increase in insulin sensitivity following the ten-day cold acclimation period, and 

also no effects on the long term were observed.  

 

Since the increase in insulin sensitivity in our previous study (13) was very marked (40% 

increase), observed in all subjects, and was accompanied by marked increases in muscle 

GLUT4 translocation, we carefully evaluated the differences between the two studies. Thus, 

in both studies patients with T2DM were investigated before and after ten days of cold 

exposure, following a similar design. One difference in the current study design was the 

inclusion of a meal test as the primary outcome parameter. This meal test was performed on 

the day following the ten day cold exposure.  

 

Consequently, the clamp in the current study was performed three days after the meal test, 

with two days of cold exposure in between. We can hence not exclude a carry-over effect of 

the meal test on the results of the clamp. It should be noted though, that postprandial glucose 

metabolism measured during the meal tests, which can be seen as a marker of insulin 

sensitivity, was also not affected by cold acclimation. Another difference between the two 

studies was that in the current study we specifically aimed to investigate the effect of NST and 

aimed to prevent shivering. To this end, the room temperature during cold exposure was 

approximately 1.4 °C higher compared to our previous study (13).  

 

Furthermore, subjects were provided with extra clothing when shivering occurred to prevent 

shivering thermogenesis. While this strategy was more effective in preventing shivering 

and/or tense muscle compared to our previous study (13), as indicated by the self-reported 

shivering questionnaires taken during the cold acclimation, it may also have affected the 

clamp outcome. We previously reported a marked increase in GLUT4 translocation in the 

overnight fasted state (so in the absence of elevated insulin levels) (7, 13). Classically, this 

increase in GLUT4 in the celmembrane in the absence of insulin stimulation is attributed to 

muscle contraction, which is required for shivering or to increase muscle tension (29). 

Consistently, no effect of cold acclimation on GLUT4 translocation was found in the current 

study.  

 

To further investigate the possible effects of shivering that we may have missed in our 

previous study (13), we performed gene-expression analyses in skeletal muscle biopsies 

obtained before and directly after the cold acclimation in both studies. Results of these 

analyses show upregulation of genes related to muscle contraction and remodeling of the 

extracecellular matrix in our previous study (13) but no change in the current study. Those 



 

  

genes were selected from micro-array data obtained after cold exposure (13) and compared 

with an exercise training study (14). This comparison revealed overlap in skeletal muscle gene 

expression related to muscle contraction pathways (unpublished data). Interestingly, all 

previous published studies that observed improvements in insulin sensitivity after cold 

acclimation, included at least a few days of (mild) shivering before NST occurred (4, 5, 7, 13, 

22). Taken together, the findings reported here and in literature (4, 10, 30), suggest that some 

mild form of cold-induced shivering is needed to trigger beneficial effects on skeletal muscle 

insulin sensitivity.  

 

In conclusion, we here show that a ten-day cold acclimation period at 16-17 °C with NST does 

not induce metabolic improvements nor reduce cardiovascular risk markers in obese men and 

women with T2DM. The lack of effects in the current study are probably due to the absence 

of shivering compared to previous studies. Therefore, further research could focus on the 

potential of (mild) shivering thermogenesis on metabolic health, as ten days of cold 

acclimation without shivering at 16-17 °C  in obese men and women with T2DM is insufficient 

to induce positive effects on human metabolism. 

 

 

Methods 

 
Participants 

Ten obese men and women were included in the study with one volunteer dropping out 

because of personal reasons. Hence, nine participants completed the study. All participants 

underwent a screening including assessment of blood parameters, electrocardiography, 

anthropometric measurements and a questionnaire to evaluate eligibility. Inclusion criteria 

were: 45-70 years of age, BMI 27-35 kg/m2, diagnosed with type 2 diabetes for at least one 

year (relatively well-controlled HbA1c <8.5%), use of oral glucose lowering drugs (metformin 

and/or sulfonylurea agents), a sedentary lifestyle (<3 h exercise per week), non-smoking for 

at least six months, no alcohol use of >2 servings per day and a stable body weight for at least 

six months. Other medication without known effects on the primary outcome measurement 

was allowed. Data were collected between March 2016 and August 2017.  

 

Ethical approval 

The study was conducted according to the declaration of Helsinki and was approved by the 

Ethics Committee of the Maastricht University Medical Center. The study was registered at 

https://trialregister.nl (NL4469/NTR5711). All participants provided written informed consent 

before screening. 

  



 

  

Study design 

Figure 1 provides an overview of the study design. A ten-day cold acclimation intervention was 

performed as previously described (13), except for the temperature, which was set 

approximately 1-2C higher, at 16-17 C to avoid shivering. Before the onset of the cold 

acclimation period a high-fat meal test (mealtest pre) was combined with several vascular 

function measurements. Three days later, liver fat content was measured followed by a 

muscle biopsy and a hypersinsulinemic-euglycemic 2-step clamp (clamp pre). Subsequently, a 

ten-day cold acclimation intervention started (Day 1-10). One day after the last cold exposure, 

(Day 11), the first test day was repeated (mealtest post). The following two days (Day 12-13), 

additional cold exposure was maintained to ensure sustainment of the intervention effect for 

the re-tests on Day 14 (clamp post). Upon ten days without intervention, another muscle 

biopsy was taken followed by a hypersinsulinemic-euglycemic 2-step clamp (clamp long term) 

to assess the sustained long-term effect of cold acclimation on whole body insulin sensitivity. 

Two months after the last test day, fasting blood samples were taken to measure markers for 

glucose homeostasis. All tests were executed at room temperature. At the evening preceding 

all test days, participants consumed a standardized meal and remained fasted from 20:00 h 

onwards. In addition, participants were asked to refrain for at least 48 hours from any physical 

activity different from their daily routine. Participants arrived at the testing facility by car. 

Blood glucose lowering medication was discontinued on the morning of the clamps.  

 

 
Figure 1. Study design 
A meal test and clamp were performed before cold acclimation, separated by two days. After 
ten days of cold exposure a second meal test was performed, followed by 2 additional days of 
cold exposure and followed by a second clamp. Ten days after the last intervention day, a third 
clamp was performed. Two months after the last clamp another blood sample was collected. 

Blue boxes represent cold acclimation intervention (16-17C). White boxes represent no 
intervention. Black boxes represent test days.  
 

  



 

  

Cold acclimation 

During cold acclimation, participants were progressively exposed to an environmental 

temperature of 16-17 C for ten consecutive days: 2-hours on day 1, 4-hours on day 2 and 6-

hours on days 3 to 10. On Day 11-12, participants were again cold-exposed for six hours. 

Participants were dressed in short-sleeved T-shirts and shorts and remained sedentary while 

staying in the cold room and instructed not to change their habitual diet during the entire 

study period. Food intake while staying in the cold room was kept constant. Wireless 

temperature sensors (iButtons, Maxim Integrated, San Jose, CA, USA) were placed on 15 ISO-

defined sites on days 3 and 10 of the cold acclimation period to measure skin temperature. 

Average skin temperature as well as proximal and distal temperature was calculated as 

described before (31). Participants were not allowed to shiver. In case shivering started, extra 

clothing was immediately provided to ensure that shivering stopped. At selected timepoints 

during day 3 and 10 VAS scales on thermal sensation, thermal comfort and shivering were 

completed. Incremental AUCs (iAUC) were calculated to determine subjective responses 

during the cold acclimation period, as described before (8).  

 

High-fat meal test 

After placing an intravenous cannula, a fasted blood sample was drawn (T=0) and energy 

expenditure and substrate oxidation was measured via indirect calorimetry. At 09:00 h, 

participants were asked to consume a high-fat shake, within ten minutes. The nutritional 

content of the shake is shown in Supplementary Table 2. Subsequently, blood samples were 

drawn after 15, 30, 45, 60, 90, 120, 180, 240, 300, 360, 420 and 480 minutes. After the blood 

sampling at T=240, at 13:00 h, the participants consumed a second high-fat shake with the 

exact same contents as in the morning to investigate the second-meal effect, as described 

before (32). At T30-60, T90-120, T210-240, T270-300, T350-380 and T450-480 indirect 

calorimetry was performed to measure energy expenditure and substrate oxidation. 

Participants were not allowed to eat or drink anything else throughout the test day, except for 

water.  

 

Supplementary Table 2. Nutritional information of meal test shake  
Content Energy % 

Energy 755 kcal 100 

Fat  50.8 gr 60.6 

Saturated fat 26.1 gr 31.1 

Unsaturated fat 23.8 gr 28.4 

Cholesterol 0.9 gr 1.1 

Carbohydrate  62.3 gr 33.0 

Protein 10.9 gr 5.8 



 

  

Vascular function measurements 

On the morning of the meal tests, radial artery pulse wave analysis (PWA) was performed with 

a tonometer (SphygmoCor v9, AtCor Medical, West Ryde, Australia), from which the aortic 

augmentation index corrected for heart rate (AIxHR75) was calculated as described before 

(33). Using the same tonometer, carotid-to-femoral pulse wave velocity (PWVc-f) was also 

determined as described before (33). The vasculare stiffness measurements were performed 

before (T0) and during the high-fat meal tests at two different time points (T120 and T300). 

 

Retinal vascular images were obtained to measure microvascular effects. Retinal images were 

obtained as described before using a nonmydriatic retinal camera (Topcon TRC-NW-300; 

Topcon Co.) (34). At least two arteriolar and two venular segments were measured and 

summarized by using the Parr-Hubbard formulas (35). These segments differed between study 

participants, however, they had to be exactly the same segments for each participant at all 

measurements. 

 

Hyperinsulinemic euglycemic clamp 

To determine insulin sensitivity, a two-step hyperinsulinemic euglycemic clamp (36) with co-

infusion of D-[6.6-2H2] glucose tracer (0.04 mg/kg/min) was performed, as described before 

(37). In short, insulin-suppressed endogenous glucose production (EGP) during low insulin 

infusion (10 mU/m2/min) was measured as a reflection of hepatic insulin sensitivity. This was 

followed by a high insulin infusion (40 mU/m2/min) to mesaure whole body glucose disposal 

(Rd). Indirect calorimetry was performed during baseline, low insulin and high insulin to 

measure energy expenditure and substrate oxidation. Steele’s single pool non-steady state 

equations were used to calculate glucose appearance (Ra) and glucose disposal (Rd) (38). 

Volume of distribution was assumed to be 0.160 l/kg for glucose. Whole-body insulin 

sensitivity (Si) was calculated according to Bergman et al. (39), taking differences in insulin and 

glucose levels into account: Si = Rd / (insulin*clamping glucose), where  represents the 

change from the basal state to the insulin-stimulated condition. EGP was calculated as Ra 

minus exogenous glucose infusion rate. Non-oxidative glucose disposal (NOGD) was calculated 

as Rd minus carbohydrate oxidation. 

 

Indirect calorimetry 

Whole body oxygen consumption and carbon dioxide production were measured during 

specific timepoints in the meal tests and the clamps using an automated respiratory gas 

analyzer with a ventilated hood system (Omnical; Maastricht Instruments, Maastricht, The 

Netherlands). Participants were measured in supine position for 30 minutes each time. Energy 

expenditure, glucose oxidation and fat oxidation rates were calculated using equations based 

on the measured averaged oxygen and carbon dioxide concentrations with the assumption 

that protein oxidation was negligible (40, 41). 

  



 

  

Intrahepatic lipid quantification by MR spectroscopy 

Proton magnetic resonance spectroscopy (1H-MRS) was used to quantify intrahepatic lipid 

content (IHL) at 07:00 h in the morning of Clamp pre and Clamp post. All measurements were 

performed on a 3.0T whole body scanner (Achieva Tx, Philips Healthcare, Best, The 

Netherlands). Spectra were acquired as described before (42). Values are given as T2 

corrected ratios of the CH2 peak relative to the unsuppressed water peak, expressed as 

percentage. 

 

Skeletal muscle biopsies 

On each clamp day, a muscle biopsy was taken from the m. vastus lateralis under local 

anesthesia (2% lidocaine, without epinephrine) using the Bergström technique (43). The 

muscle biopsy was taken before the start of the insulin infusion on the morning of the clamp, 

at 08:30 h after an overnight fast. The biopsy was divided in several parts. One part was 

immediately frozen in melting isopentane for biochemical analyses. Other parts were 

embedded in Tissue-Tek and frozen in melting isopentane for immunohistochemical analyses.  

 

Histochemical analysis of GLUT4 in skeletal muscle biopsies 

Muscle biopsies taken in the overnight fasted state, prior to all three clamps, were analysed 

for GLUT4 translocation. Sections were stained for GLUT4 as described previously (13), with 

primary antibodies against GLUT4 (sc-1608, Santa Cruz, Dallas, USA) and Laminin (L-9393, 

Sigma, St. Louis, USA), and appropriate conjugated secondary antibodies AlexaFluor488 

(AF488, Invitrogen, Life Technologies Europe, Bleiswijk, The Netherlands) and AlexaFluor555 

(AF555, Invitrogen, Life Technologies Europe). Images were acquired with a Nikon E800 

fluorescent microscopy (Nikon, Amsterdam, The Netherlands) as described previously (13). 

Images were analyzed using ImageJ (NIH, Bethesda, USA) (44). Mean intensity of GLUT4 was 

measured on the cell membranes and in the cytosol. 

 

Shivering markers in skeletal muscle biopsies 

RNA extraction and cDNA synthesis from skeletal muscle was performed as previously 

described (45, 46). In short, RNA was isolated from skeletal muscle biopsies using Trizol 

followed by purification using the RNeasy kit from Qiagen (Hildenberg, Germany). cDNA was 

created by using the high-capacity RNA-to-cDNA kit from Applied Biosystems (Foster City, 

USA). mRNA expression was determined using a CFX384 Touch Real-Time PCR Detection 

System from BioRad Laboratories (Hercules, CA) using the following Taqman assays: CHRNA1 

(Hs00909664), CCDC39 (Hs00977326), MYH8 (Hs00267293), CCDC80 (Hs00277341), CHRND 

(Hs00897937), ACTC1 (Hs01109515), COL1A1 (Hs00164004), COL3A1 (Hs00943809), MYH3 

(Hs01074230), THBS4 (Hs00170261), CHRNG (Hs00183228), SESN3 (Hs00914870), MYBPH 

(Hs00192226) and IGFN1 (Hs01567410). Gene expression was normalized to RPLPO (fwd: 

CCATTCTATCATCAACGGGTACAA, rev: AGCAAGTGGGAAGGTGTAATCC) and expression was 

analyzed via the standard curve method. Data is expressed in heatmap showing changes over 

basal using signal log ratios.   



 

  

Blood sampling and analyses 

Blood collected in EDTA-coated tubes were immediately stored on ice, centrifuged and plasma 

was stored at -80 C until analyses. Blood collected in serum-tubes was stored at room 

temperature for at least 30 minutes to allow coagulation, followed by centrifugation and 

storage at -80 C until analyses. Glucose (Hk-CP, Axonlab, Amsterdam, The Netherlands) and 

FFA (NEFA-HR, WAKO chemicals, Neuss, Germany) in  meal test samples were analyzed 

enzymatically in EDTA plasma using a Pentra 400 (Horiba, Montpellier, France). Insulin during 

the meal test was analyzed using RIA, and insulin during the clamp was analyzed using ELISA. 

Triglycerides (Sigma, Zwijndrecht, The Netherlands), cholesterol (CHOD-PAP, Roche 

Diagnostics, Mannheim, Germany) and HDL-cholesterol (CHOD-PAP, Roche Diagnostics, 

Mannheim,Germany) after precipitation of apoB-containing lipoproteins with 

phosphotungstic acid and magnesium ions, were analyzed in serum also using a Pentra 400. 

LDL-cholesterol was calculated according the Friedewald equation (47).  

 

Statistical analyses 

Participant characteristics are reported as mean ± SD. Other results are reported as mean ± 

SE. Data are presented for n=9, unless otherwise indicated. Differences between Clamp pre, 

Clamp post and Clamp longterm were analyzed with a Friedman test. Posthoc analyses were 

performed with Dunn’s multiple comparison test. Differences between Mealtest pre and 

Mealtest post were analyzed with a Wilcoxon matched-pairs signed rank test. Differences 

between muscle genexpression in the current and previous study were analyzed with a Mann-

Whitney test. All statistical tests were performed two sided, with the statistical significance 

was set at p<0.05. Statistical analyses were performed using IBM SPSS version 23.0 for MacOSx 

(IBM, Armonk, NY, USA).  
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Chapter 5 

Acute cold exposure leads to increased levels of 

triglycerides during mixed-meal tests in young healthy 

subjects 
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Abstract   
 

Background & Aims 

Atherosclerosis and elevated lipid levels are important factors contributing to the growing 

mortality and morbidity due to cardiovascular disease in the modern world. In order to reduce 

lipid levels, animal studies revealed that brown adipose tissue (BAT) is able to combust large 

amounts of circulating triglycerides. Here, we aim to investigate if stimulation of non-

shivering thermogenesis via acute cold exposure could reduce lipid levels in humans.  

 

Materials & Methods  

14 healthy young volunteers were included. All volunteers underwent three separate mixed 

meal tests lasting 8 hours, under different thermal conditions: a) at thermoneutrality, b) 

during acute non-shivering cold exposure and c) at thermoneutrality but after three hours of 

non-shivering cold exposure. Postprandial substrate and lipid metabolism was investigated 

by regular blood sampling, and skin temperatures and energy expenditure were measured. 

Muscle biopsies were obtained during acute cold exposure and at thermoneutrality to 

measure skeletal muscle mitochondrial function. On a separate day, cold induced brown 

adipose tissue activity was measured using an FDG-PET/CT scan.  

 

Results 

Acute cold exposure increased resting and diet-induced energy expenditure (17.4±3.4 % vs. 

10.5±1.2%) with a concomitant increase in fat oxidation (8.6±1.6 g vs. 5.1±1.0 g; p=0.0785). 

Contrary to our hypothesis, postprandial triglyceride levels were increased during cold 

exposure compared to thermoneutral (8.2±0.1 mmol/l/min vs. 6.2±0.1 mmol/l/min; 

p=0.0134), or compared to pre-cooling (8.2±0.1 mmol/l/min vs. 4.6±0.1 mmol/l/min; 

p=0.0295). Acute cold exposure did not affect skeletal muscle mitochondrial function 

(maximum coupled respiration, p=0.15; leak respiration, p=0.74). BAT activity and volume did 

not correlate with postprandial changes in plasma lipid levels. Conclusion: Opposite to 

findings in animals, acute non-shivering thermogenesis does not decrease postprandial lipids 

levels in young healthy volunteers, despite increased whole body energy expenditure and fat 

oxidation.  

 

  



 

  

Introduction 

 
In our modern Western society cardiovascular disease (CVD) has become one of the foremost 

causes of death, with up to 31.4% of all deaths worldwide (1). One of the most important risk 

factors for CVD is hyperlipidaemia (2), which is classified as elevated levels of cholesterol 

and/or triglycerides. Indeed, lifestyle and pharmacological therapies are aimed at lowering 

levels of low-density lipoprotein cholesterol, known as the lipoprotein that carries the major 

risk for CVD (2) and on the lowering of circulating triglyceride levels. Indeed, 

hypertriglyceridemia is also considered as an important risk factor for CVD (3), even 

independent of high levels of LDL (4, 5).  

 

Preclinical research from the last decade has provided strong evidence that brown adipose 

tissue (BAT) is an interesting tissue in the clearance of circulating triglycerides. BAT has the 

unique feature of having a special mitochondrial protein, uncoupling protein 1 (UCP-1) (6), 

which is used to uncouple the mitochondrial proton gradient from ATP production.. 

Therefore, this mitochondrial uncoupling leads to futile use of substrates with fatty acids as 

main substrate (6), thereby producing heat. It has been shown that activation of BAT through 

cold increases the density of BAT tissue on CT scan images in humans (7, 8), indicating that 

intracellular lipids are combusted (7, 8). As a result, BAT activation would eventually lead to 

a depletion of the intracellular lipid stores, and circulatory lipids are needed to replenish Bat 

lipid stores. Indeed, it was shown in mice that active brown adipose tissue might be able to 

take up a large amount of particles containing triglycerides upon cold exposure (9). It is 

suggested that activated BAT will first utilize intracellular lipid stores, and upon continued 

activation will start to increase uptake of fatty acids from lipoprotein particles to maintain the 

heat production. Indeed, in a recent study with transgenic mice overexpressing UCP1, it was 

shown that cold exposure increases lipoprotein lipase activity in BAT (10). Furthermore it was 

shown that activation of brown fat in APOE*3-Leiden.CETP mice leads to reduced 

atherosclerosis (11). Additionally, in ApoE-/- and LDLR-/- mice, the effect of cold exposure in 

preventing atherosclerosis is absent (12). These results suggest that the clearance of fatty 

acids from lipoprotein particles by activated BAT plays an important role in atherosclerosis 

development in mice. 

  

In humans, the exact role of BAT is still under debate. We and others have shown that brown 

adipose tissue is functionally present in human adults and activated by acute cold and cold 

acclimation (13-15), in both obese human subjects (16) and patients with T2DM (17). Next to 

the presence of active BAT in adult humans, there is also evidence that human BAT is involved 

in cold-induced metabolism (18, 19). More recently Chondronikolas et al (20) confirmed that 

short-term cold exposure results in an increased density of BAT tissue suggesting the use of 

intracellular lipid droplets, and a subsequent activation of white adipose tissue lipolysis to 

refuel the BAT. Additionally, Blondin et al have shown that, comparable to mice, BAT is 



 

  

involved in uptake of dietary fatty acids (21).In their study, they used only a single meal and 

a predetermined temperature on each participant. This could mean that they missed a so-

called second meal effect and interindividual differences in the response to cold exposure. 

However, Blondin et al also concluded that the net contribution of BAT to the clearance of 

dietary fatty acids is small Indeed, relative to rodents, in humans the amount of BAT is small 

(6, 22). Hence, in addition to BAT, skeletal muscle can play a role in cold induced energy and 

substrate metabolism. Indeed, it has previously been shown that the uncoupling process in 

muscle mitochondria is related to an increase in non-shivering thermogenesis (23, 24), and 

muscle tissue could thus be important in the clearance of plasma triglycerides.  

 

Therefore, the aim of the current study was to investigate if acute cold exposure in humans 

can impact postprandial substrate metabolism and enhance triglyceride clearance. 

 

 

Methods 

 
Volunteers 

14 healthy young volunteers, nine male and four female, completed the study. Eligibility was 

evaluated via a screening including assessment of blood parameters, cardiac function 

(electrocardiography), anthropometric measurements and a questionnaire about lifestyle. 

Inclusion criteria were: 20-50 years of age, BMI 20-30 kg/m2, a normal physically active 

lifestyle (<3 h exercise per week), non-smoking for at least 6 months at inclusion, no alcohol 

use of >2 servings per day and stable dietary habits (no weight loss or gain of more than 5 kg 

in the past 3 months). No medication use was allowed, except for the use of any form of 

hormonal anticonception in female volunteers 

 

Volunteers were excluded if they had any active metabolic or cardiovascular diseases, were 

pregnant or if they had a haemoglobin content below 8.4 mmol/L. All data were collected 

between April 2018 and November 2019.  

 

Ethical approval 

The study was conducted according to the declaration of Helsinki and was approved by the 

Ethics Committee of the Maastricht University Medical Center. The study was registered at 

https://trialregister.nl (NTR6573). All volunteers provided their written informed consent 

before screening. 

 

Study design 

The volunteers participated in three meal tests, each characterized by different thermal 

conditions: thermoneutral (at thermoneutrality), thermoneutral with three hours of 

preceding cold exposure (pre-cooling) and during acute cold exposure, as shown in figure 1. 



 

  

On a separate day all volunteers underwent an 18F-FDG PET/CT-scan directly after four hours 

of acute non-shivering cold exposure to assess the individuals capacity to activate brown 

adipose tissue, as described previously (25). Between each test day (meal test or PET/CT scan) 

there were at least two days to prevent any effect of the previous test on the next test day. 

 

All test days were randomized, as to prevent any effect of the order of tests on the 

measurements.  

 

Cold exposure 

To investigate the effect of BAT activity on lipid metabolism, we cooled volunteers down to 

maximize non-shivering thermogenesis, as described before (25). In short, Volunteers were 

wrapped in a water-perfused suit (ThermoWrap Universal 3166; MTRE Advanced 

Technologies Ltd., Yavne, Israel), while the water temperature was controlled using a two 

temperature management units (Blanketrol M3; Cincinnati Sub Zero, OH, USA). First, 

volunteers remained at thermoneutral conditions (32 °C water temperature), after which the 

water in the suit was cooled in a stepwise fashion, 4°C per 15 minutes. This was done until 

visible shivering occurred, at which point the subjects were heated to 34 °C for 10 minutes to 

minimize shivering. After these 10 minutes, the water temperature was set back to 2 °C above 

the shivering onset temperature. For the remainder of each cooling period, temperature was 

increased by 1°C degree if visible shivering occurred again.  

 

Meal test 

Volunteers arrived at our research centrum the evening before each meal test, around 

6.00PM. Upon arrival they consumed a standardized meal, after which they were asked to 

remain fasted. The volunteers stayed overnight at the lab, and were asked to sleep from 

10.00PM onwards. The following morning volunteers were woken at 5.30AM, after which 

they moved to a separate room and were asked to lie down on a bed in our research lab.  

 

After placing an intravenous cannula, a fasted blood sample was drawn (T=0) and energy 

expenditure and substrate selection was measured by indirect calorimetry with a ventilated 

hood system (Omnical; Maastricht Instruments, Maastricht, The Netherlands). Between 6.00 

and 9.00AM the volunteers were instructed to remain on the bed, and remain fasted. At 

9.00AM, volunteers were asked to consume a high-fat shake within ten minutes. The shake 

had a mean temperature of 43.5±0.8 °C, as measured with a thermocouple (PL-125-T4USB VS, 

Voltcraft, Conrad Electronic SE, Hirschau, Germany). The nutritional content of the shake is 

shown in supplementary table S2. Subsequently, blood samples were drawn after 15, 30, 45, 

60, 90, 120, 180, 240, 300, 360, 420 and 480 minutes. After the blood sampling at T=240, at 

1.00PM, the volunteers consumed a second milkshake with the same composition as in the 

morning to investigate the so-called second-meal effect, as described before (26). At T30-60, 

T90-120, T210-240, T270-300, T350-380 and T450-480 indirect calorimetry was performed to 



 

  

measure energy expenditure and substrate oxidation by ventilated hood. Volunteers were not 

allowed to eat or drink anything else throughout the meal test, except for water.  

 

The difference between the meal tests was the temperature to which the volunteers were 

exposed, as shown in figure 1.  The first meal test was performed at thermoneutrality. The 

second meal test was performed during cold exposure via the water-perfused suit to maximize 

non-shivering thermogenesis during the meal test. The third meal test was performed after 

cold exposure: here volunteers were exposed to cold from 6.00AM until 9.00AM, again to 

maximize non-shivering thermogenesis (pre-cooling). After 9.00AM, the volunteers were 

exposed to a thermoneutral temperature. The pre-cooling was meant to deplete the 

intracellular lipid storages of BAT tissue.  

 

18F-FDG PET/CT scan 

For the determination of cold-induced BAT activity, volunteers first remained at 

thermoneutral conditions (32 °C water) for 30 minutes, during which basal metabolic rate was 

measured with a ventilated hood system (Omnical; Maastricht Instruments, Maastricht, The 

Netherlands). Thereafter an individualized cooling procedure was started to determine non-

shivering thermogenesis (NST) as described above, after which energy expenditure was 

measured for 30 minutes. Following this, 75 MBq of 18F-FDG was injected via an intravenous 

cannula. Cold exposure was continued for 60 minutes, while volunteers were instructed to 

remain lying still. Next, the water-perfused suit was removed and the volunteers underwent 

a static 18F-FDG-PET/CT scan. For the first five volunteers a Gemini TF PET-CT, Philips, The 

Netherlands was used (120 kV, 30 mAs, six to seven bed positions (5 minutes per bed 

position)) were used, to cover the area from the skull to the iliac crest. For the other nine 

volunteers a Discovery MI 5R, GE Healthcare, Chicago, Ill, USA, was used (120 kV, 30 mAs, a 

maximum of four bed positions was used (4 minutes per bed position). A PET scan followed 

the low-dose CT scan. Tracer uptake was determined with the PET scan while the CT was used 

for attenuation correction and anatomical localization of the active BAT. With the use of an 

EARL reconstruction, the scans from the nine volunteers were made comparable to the scans 

from the five volunteers, as described by Boellaard et al (27). This ensured that we were able 

to compare results from both scanners in this study. 

 

The scans were analyzed with PMOD software (version 3.0; PMOD Technologies). The regions 

of interest were manually outlined, while thresholds of 1.5 SUV (standardized uptake value) 

and Hounsfield units between -10 en -180 were used, as described previously by our group 

(25). Additionally fixed volumes (10mm by 10 mm) were placed in the cervical adipose tissue 

behind the clavicle to measure general uptake values as described before (28). BAT activity 

was expressed in SUV (18F-FDG uptake (kBq/mL/ (injected dose (kBq/volunteer weight (g)). 

The activity was determined as average SUV (SUVmean) and as total SUV (SUVmean times 

the volume of interest).  

 



 

  

Indirect calorimetry 

Whole body oxygen consumption and carbon dioxide production were measured during fixed 

time points in the meal tests with the use of an automated respiratory gas analyzer with a 

ventilated hood system (Omnical; Maastricht Instruments, Maastricht, The Netherlands). 

Volunteers were measured in supine position for 30 minutes each time. The measured 

averaged oxygen and carbon dioxide concentrations were used to calculate energy 

expenditure, glucose and fat oxidation with the assumption that protein oxidation was 

negligible (29, 30). These fixed time points are indicated in figure 1.  

 

 
Figure 1. Study design 
Three meal tests. Colour of horizontal lines indicates cooling (blue) or thermoneutral (red) 
conditions. Bold arrows indicate meal consumption. Crosses show muscle biopsies. Horizontal 
boxes indicate the indirect calorimetric measurements. Thin arrows show blood drawings. 
 

 

Skin temperature 

During all measurements, volunteers were asked to wear shorts and t-shirt (overall clo value 

0.49), and were instructed to remain supine and resting. Wireless temperature sensors 

(iButtons DS1922L, Maxim Integrated, San Jose, CA, USA) were placed on 15 ISO-defined sites 

(ISO-standard 9886:200) during all measurement days to measure skin temperature (31). 

Average skin temperature as well as proximal and distal temperature was calculated as 

described before (32). 

 



 

  

Skeletal muscle biopsies and mitochondrial respiration 

To assess the effect of acute cold exposure on mitochondrial respiration, two muscle biopsies 

were taken under local anaesthesia using the Bergström technique (33). These biopsies were 

taken after an overnight fast before the consumption of the first shake on the morning of the 

meal test at 8.30AM. One biopsy was taken during cold exposure (under stable non-shivering 

conditions) and one biopsy was taken under thermoneutral conditions. After the incision was 

made, a sterile golden temperature probe (BAT-10 Multipurpose Thermometer, Physitemp 

Instruments LLC, Clifton, NJ, USA) was inserted into the muscle to measure both muscle 

temperature and skin temperature. Subsequently the biopsy was taken and the obtained 

muscle tissue was immediately placed in ice-cold preservation medium (BIOPS, OROBOROS 

Instruments, Innsbruck, Austria). Intact muscle fibers were permeabilized, after which the 

muscle fibers were transferred into ice-cold mitochondrial respiration buffer (MiR05, 

OROBOROS Instruments, Innsbruck, Austria). Next, ex vivo mitochondrial respiration was 

determined by measuring oxygen consumption rate upon several substrates using high-

resolution respirometry (Oxygraph, OROBOROS Instruments, Innsbruck, Austria) as described 

previously (34). All measurements were performed in triplicate or quadruplicate, depending 

on the reliability of the respirometric data, as assessed by NvP and JH. Data is presented per 

mg wet muscle weight. 

 

Blood sampling and analyses 

Blood collected in EDTA-coated tubes was immediately stored on ice, centrifuged and plasma 

was stored at -80 C until further analyses. Blood collected in serum-tubes was stored at room 

temperature for at least 30 minutes to allow coagulation, followed by centrifugation and 

storage at -80 C until further analyses. Glucose (Hk-CP, Axonlab, Amsterdam, The 

Netherlands), triglycerides (Sigma, Zwijndrecht, The Netherlands) and FFA (NEFA-HR, WAKO 

chemicals, Neuss, Germany) were determined enzymatically in EDTA plasma derived from the 

meal test samples using a Pentra 400 (Horiba, Montpellier, France).  

 

Analysis of lipid particles via NMR spectroscopy 

Blood collected in serum-tubes, stored at -80 C were analyzed to specifically measure 

concentrations of lipoprotein particles using nuclear magnetic resonance (NMR) spectroscopy 

(Axinon Magnetic Group Analysis, Numares health, Regensburg Germany).  

 

Statistical analyses 

Subject characteristics are reported as mean ± SD. Other results are reported as mean ± SE. 

Data are presented for n=14, unless otherwise indicated. All data were evaluated for normal 

distribution. Data of three different meal test days was compared using a total (AUC) and an 

incremental area-under-the curve (iAUC). The AUC/iAUC were calculated for the duration of 

the meal test, starting at 9.00 AM and ending at 5.00 PM. Differences between meal tests 

were analyzed with a repeated measures ANOVA for parametric data and with a Friedman’s 

ANOVA for non-parametric data. Statistical significance was set at p<0.05. Statistical analyses 



 

  

were performed using IBM SPSS version 26.0 for MacOSx. Figures were made using Graphpad 

Prism version 6.0 for MacOSx. 

 

 

Results 

 
Subject characteristics 

14 healthy young volunteers (9 men, 5 women, age: 26.1±7.2 years) participated in this study. 

Volunteers were non-obese (BMI: 23.3±1.6 kg/m2), were non-smokers, did not use any 

medication except for hormonal anticonception in women and had an overall sedentary 

lifestyle (Baecke score 10.4±2.1). The participant characteristics are presented in table 1. 

There were no significant differences between male and female volunteers in BMI (p=0.42), 

age (p=0.31) and triglyceride levels at screening (p=0.77). 

 

Table 1. Participant characteristics 

 

Parameter Mean ± SD 

Number volunteers female, male 5, 9 

Age (years) 26 ± 7.2 

Body weight (kg)  72.5 ± 10.1  

Height (m) 1.75 ± 0.10 

BMI (kg/m2) 23.3 ± 1.6 

Glucose (mmol/L) 4.9 ± 0.4 

TG (mmol/L) 1.05 ± 0.60 

ASAT (U/L) 23 ± 6 

ALAT (U/L) 24 ± 9 

GGT (U/L) 20 ± 7 

eGFR (ml/min/1.73mm2) 89 ± 9 

Physical activity level (Baecke score) 10.4 ± 2.1 

Abbreviations: BMI, body mass index; TG, triglycerides; ASAT, aspartate aminotransferase; 
ALAT, alanine aminotransferase; GGT, gamma-glutamyl transferase; eGFR, estimated 
glomerular filtration rate according CKD-EPI method. 
 

 

  



 

  

Skin and muscle temperatures 

First, to investigate the body’s response to the cold exposure, we measured skin and muscle 

temperature. During the meal test, mean skin temperature was significantly higher at 

thermoneutrality compared to cold (34.8 ±0.1 C vs. 31.3 ±0.5 C, p= 0.004), however it was 

not significantly different compared to the meal test with precooling (33.6±0.7 C; p=0.1562, 

figure 2A). There were no significant differences between genders during cold exposure 

(p=0.97) or after pre-cooling (0.32). There was however a significant difference between male 

and female volunteers at thermoneutral conditions (34.6±0.1 C vs. 35.0±0.1 C; p=0.011). 

These results are shown in supplemental figure 2A. Mean proximal skin temperature was 

significantly higher during the meal test at thermoneutrality compared to cold (35.7±0.04 C 

vs. 31.8±0.6 C, p= 0.0008) however it was not significantly different compared to precooling 

(34.5±1.0 C; p=0.1015, figure 2B). There was a significant difference in proximal skin 

temperature between male and female volunteers during the meal test at thermoneutrality 

(35.4±0.1 C vs. 36.0±0.1 C; p=0.0006). There were no gender differences in the meal test 

during cold (p=0.38) or with pre-cooling (p=0.26), as shown in supplemental figure 2B.  

 

Similarly, the mean distal temperature was significantly higher during the meal test at 

thermoneutrality compared to cold (33.4 ±0.2 C vs. 28.7±0.7 C, p= 0.0004), and it showed a 

trend towards a significant difference compared to pre-cooling (31.3±0.8 C; p=0.07, figure 

2C). There were no gender differences in distal skin temperature during the meal tests 

(p=0.26 at thermoneutrality; p=0.87 during cold; p=0.38 with pre-cooling) as shown in 

supplemental figure 2C. The mean proximal-distal gradient did not differ significantly 

between the meal test at thermoneutrality compared to cold (2.4±0.2 C vs. 3.0±0.6 C, p= 

0.17) or pre-cooling (3.2±0.8 C, p= 0.30) as shown in figure 2D.  

 

There were no gender differences in the meal tests at thermoneutrality, during cold or after 

pre-cooling (p=0.45; p=0.31; p=0.97), as shown in supplemental figure 2D. Regarding the 

mean underarm-finger gradient, we did observe a significantly lower gradient during the meal 

test at thermoneutrality compared to the meal test during cold (-0.8±0.1 C vs. 5.7±0.9 C, 

p=0.0002). The mean under-finger gradient was also higher in the meal test during cold 

exposure compared to the meal test with pre-cooling (1.2±0.9 C, p=0.044) as shown in figure 

2E. During the meal test at thermoneutrality there was lower gradient in the female 

volunteers (-1.7±0.2 C vs. -0.2±0.1 C; p=0.0006).  

 

However, there were no gender differences in the meal tests during cold (p=0.38) or after 

pre-cooling (p=0.31), as shown in supplemental figure 2E. Muscle temperature was 

significantly higher during thermoneutral condition compared to cold exposure (35.1±0.2 C 

vs. 31.9±0.4 C; p<0.001).  

 



 

  

 



 

  

 

 
 

Figure 2. Skin temperatures during the meal tests  
A: Mean skin temperature during the different meal tests. B: Mean proximal skin 
temperature. C: Mean distal skin temperature, D: Mean proximal-distal gradient and E: Mean 
underarm-finger gradient. The meal test at thermoneutrality is indicated as the red line, the 
meal test during cold exposure as the blue line, and the meal test after cold as the green line. 
Dashed vertical lines show the time of consumption of the 1st shake at T0 and the 2nd shake 
at T240. n=14. Data is presented as mean ± SE. * indicates significant difference. ^  Indicates 
trends towards significant difference. 
  



 

  

Postprandial energy and substrate metabolism 
Next, we examined if cold exposure had an effect on energy expenditure during the meal test 

(9.00AM until 5.00PM. Total energy expenditure during the meal test, calculated as AUC, was 

significantly higher during cold exposure compared to thermoneutrality (2772±130.3 kJ vs. 

2613±166.2 kJ; p=0.0203) and precooling (2772±130.3 kJ vs. 2587±110.6 kJ; p=0.0052) (figure 

3A). These differences were similar in the male volunteers (p=0.015), however there were no 

differences in the female volunteers (p=0.54). Similar results were found when the iAUC 

values were calculated, with significantly higher values with the meal test during cold 

exposure (481.2±55.8 kJ) compared to thermoneutrality (481.2±55.8 kJ vs. 338.2±27.5 kJ; 

p=0.0031) and compared to precooling (481.2±55.8 kJ vs. 302.3±36.6 kJ; p=0.0494) (figure 

3A). Again in male volunteers we observed the same differences (p=0.014), while in the 

female volunteers these were absent (p=0.21). Results for male and female volunteers are 

shown in supplemental figure 3A. 

 

To calculate diet-induced thermogenesis, we subtracted average energy expenditure at rest 

from energy expenditure during the meal. DIT, expressed as a percentage of resting energy 

expenditure, was 10.5±1.2% at thermoneutrality.  During cold exposure, this percentage was 

17.4±3.4 %, consisting of both diet-induced thermogenesis (DIT) and cold-induced 

thermogenesis (CIT). These data suggest that the difference between the DIT and CIT+DIT was 

159±64 kJ or 6.1±2.3 %, which can be attributed to CIT, and suggests additive effects of CIT 

and DIT. 

 

For male volunteers, average DIT was 10.8±1.7%, and average DIT+CIT was 19.5±4.7%. For 

female volunteers, DIT was 10.1±2.0% and DIT+CIT was 13.7±4.8%. This suggests that while 

DIT% is similar in both male and female volunteers, there is a higher though non-significant 

increase in energy expenditure in cold in men compared to women (8.7±3.2% vs. 3.6±3.4%; 

p=0.49). 

 

The increase in energy expenditure during cold exposure was mainly accommodated by an 

increase in fat oxidation. Thus, iAUC of fatty acid oxidation upon the meal test was 

significantly higher during cold exposure compared to precooling (8.6±1.6 g vs. 2.1±0.7 g; 

p=0.0023) and tended to be higher compared to thermoneutrality (8.6±1.6 g vs. 5.1±1.0 g; 

p=0.0785), as shown in figure 3B. For male volunteers these differences were also present, as 

fatty acid oxidation was higher during cold compared to at thermoneutrality (11.1±2.1 g vs. 

5.4±1.3 g; p=0.05) and compared to after pre-cooling (2.2±1.0 g; p=0.001), however they were 

absent in female volunteers (p=0.31), as is shown in supplemental figure 3B. No significant 

differences in iAUC of carbohydrate oxidation were observed between the different meal 

tests, as shown in figure 3C. This was similar for both male (p=0.70) and female volunteers 

(p=0.99), as shown in supplemental figure 3C. 
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Figure 3. Energy expenditure and substrate oxidation during the meal tests 
A: Energy expenditure, B: Fatty acid oxidation and C: Carbohydrate oxidation during the meal 
tests. The meal test at thermoneutrality is indicated as the red line, the meal test during cold 
exposure as the blue line and the meal test after cold as the green line. Dashed vertical lines 
indicate the time of consumption of the 1st shake at T0 and the 2nd shake at T240. n=14. Data 
is presented as mean ± SE. * indicates significant difference. ^  Indicates trends towards 
significant difference. 
 

 

Activity of brown adipose tissue via 18F-FDG PET/CT 

To investigate if the interindividual differences in physiological response to cold exposure 

were related to the individuals BAT activity, the latter was assessed using FDG-PET/CT after 

four hours of acute non-shivering cold exposure. On average, BAT volume was 66.8±12.4 mL, 

with an average activity of 3.2±0.3 SUV and a maximal activity of 8.9±1.2 SUV. The average 

BAT activity showed a trend towards significant positive correlation with the (CIT; 159±64 kJ 

or 6.1±2.3%) (r=0.46; p=0.097). However, there was no significant correlation between DIT 

and average BAT activity (r=0.09, p=0.74), or between fatty acid oxidation and mean BAT 

activity (r=0.34, p=0.23).  

 

Postprandial substrate kinetics  

Postprandial area-under-the-curve values (AUC) for triglycerides were not significantly 

different between the meal tests at thermoneutrality, during cold or with pre-cooling 

(respectively: 1.6±0.2 mmol/l/min vs. 1.8±0.2 mmol/l/min vs. 1.7±0.2 mmol/l/min; p=0.315), 

as shown in figure 4A. Remarkably, the incremental area-under-the-curve values (iAUC) for 

triglycerides were significantly higher during cold exposure compared to thermoneutrality 

(8.2±0.1 mmol/l/min vs. 6.2±0.1 mmol/l/min; p=0.0134) or to precooling (8.2±0.1 

mmol/l/min vs. 4.6±0.1 mmol/l/min; p=0.0295). 

In male volunteers the differences in iAUC were similar, with higher iAUC values during cold 

compared to at thermoneutrality (1.4±02 mmol/l/min vs. 0.8±0.1 mmol/l/min; p=0.098). For 

female volunteers these differences were also present (0.4±0.03 mmol/l/min vs. 0.2±0.1 

mmol/l/min; p=0.063), as shown in supplemental figure 4A. 

 

Postprandial AUC of plasma FFA was significantly higher during cold exposure compared to 

thermoneutrality (550.2±30.1 umol/l/min vs. 392.7±25.5 umol/l/min; p=0.0001) and 

compared to precooling (550.2±30.1 umol/l/min vs. 433.9±35.2 umol/l/min; p=0.0052). For 

male volunteers these differences were also present, with higher AUC during cold compared 

to at thermoneutrality (552.4±36.8 umol/l/min vs. 413.2±33.1 umol/l/min; p=0.004) or 

compared to pre-cooling (454.1±50.4 umol/l/min; p=0.055). This was similar in female 

volunteers, with higher values during cold compared to at thermoneutrality (546.3±61.9 

umol/l/min vs. 355.7±38.2 umol/l/min; p=0.063), as shown in supplemental figure 4B. 

 



 

  

Similar effects were observed for iAUC, which was significantly higher during the meal test 

during cold compared to the meal test at thermoneutrality (278.0±28 umol/l/min vs. 

235.4±19.8 umol/l/min; p=0.0419) or the meal test with pre-cooling (278.0±28 umol/l/min 

vs. 172.8±17.3 umol/l/min; p=0.0017), as shown in figure 4B. For male volunteers these 

differences were also present, with higher AUC during cold compared to at thermoneutrality 

(280.9±29.0 umol/l/min vs. 233.4±21.0 umol/l/min; p=0.055) or compared to pre-cooling 

(151.7±16.1 umol/l/min; p=0.004). This was absent in female volunteers (p=0.40). Results for 

genders are shown in supplemental figure 4B. 

 

Postprandial AUC of plasma glucose was significantly lower in the meal test during cold 

exposure compared to the meal test at thermoneutrality (5.3±0.1 umol/l/min vs. 5.8±0.1 

umol/l/min; p=0.0067) and compared to the meal test with pre-cooling (5.8±0.1 umol/l/min 

vs. 5.9±0.1 umol/l/min; p=0.0052), as shown in figure 4C. For both male (p=0.072) and female 

volunteers (p=0.057) there was a tendency towards significant differences, as shown in 

supplemental figure 4C. 
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Figure 4. Plasma levels during the meal tests 

Plasma levels of A: Triglycerides, B: Free fatty acids and C: Glucose during the meal tests. The 

meal test at thermoneutrality is represented as the red line, the meal test during cold as the 

blue line and the meal test after cold as the green line. Dashed vertical lines indicate the time 

of consumption of the 1st shake at T0 and the 2nd shake at T240. n=14. Data is presented as 

mean ± SE. * indicates significant difference. ̂  indicates trends towards significant difference. 
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Mitochondrial respiration 

To investigate if acute cold exposure affects skeletal muscle mitochondrial function, the latter 

was determined in muscle biopsies taken during acute cold exposure and under 

thermoneutral conditions. No significant differences were observed in state 2 respiration 

(malate + octanoylcarnitine (MO), p=0.78) or in ADP-stimulated state 3 respiration (p=0.35). 

Addition of glutamate (MOG3) (p=0.94) and succinate (MOGS3) (p=0.43) did also not lead to 

a difference between the cold and thermoneutral conditions. Next, maximal uncoupled 

respiration was measured using FCCP titration, and was not significant different between the 

two conditions (p=0.15). Mitochondrial reserve capacity, as defined by state 3U/ state 3 upon 

was significantly higher thermoneutrality compared to cold exposure (1.26±0.02 vs. 

1.20±0.02; p=0.006), reflecting that under cold exposure, the skeletal muscle mitochondria 

have less reserve respiration. To investigate leak respiration, we performed a second trace in 

which we determined ADP-stimulated state 3 respiration upon malate + pyruvate and leak 

respiration up addition of oligomycin (state 4o). No significant differences were observed 

between the thermoneutral and cold conditions for state 3 (p=0.94) or state 4o respiration 

(p=0.74) as shown in figure 5B.  
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Figure. 5. Mitochondrial respiration.  
A, maximally coupled respiration upon substrate only (state 2). B, maximally coupled 
respiration on substrate and ADP (MOGS3) and FCCP-induced uncoupled (3u) respiration. C, 
leak respiration upon oligomycin (state 4o). Data is presented as mean ± SE. n=14 in A, B, 
n=12 in C. M, malate; O, octanoyl-carnitine; G, glutamate; S, succinate; CytC, Cytochrome C; 
FCCP, Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone.  
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Discussion 

 
Hyperlipidaemia is known to be one of the most important risk factors for developing 

cardiovascular disease (2). Reducing hyperlipidaemia could therefore decrease cardiovascular 

morbidity and mortality. There are indications that cold induced activation of brown adipose 

tissue leads to an increase of the clearance of blood lipids. Therefore, in this study we aimed 

at investigating the effects of acute non-shivering cold exposure on postprandial lipidaemia. 

 

Previous studies indicate potential metabolic benefits of cold exposure in humans, via 

activation of brown adipose tissue and/or skeletal muscle. Cold exposure, both acute and 

chronic exposure, has been shown to increase energy expenditure (13, 25). In addition, cold 

acclimation has shown to improve glucose metabolism in patients with diabetes mellitus (17). 

In our study, we observed a mean DIT of 10.5±1.2%. Interestingly, the percentual increase in 

postprandial energy expenditure during cold exposure, reflecting a combination of CIT and 

DIT, was 17.4±3.4% percent, suggesting additive effects of cold and food intake on energy 

expenditure in humans, as was described before by Dauncey et al (35).  Interestingly, the 

current study shows that cold exposure increased energy expenditure during the meal test 

on top of DIT. It has previously been shown that under fasting conditions, cold-induced 

thermogenesis (CIT) without shivering ranges from 0-30% (36). The increase in energy 

expenditure is accounted for 66.7% by an increase in fat oxidation, as was found previously 

upon cold exposure (37). Interestingly this increase in energy expenditure during cold 

exposure was less in the female volunteers, though not statistically significant. This could 

indicate that in women there is less additional energy production needed to compensate for 

the cold exposure. As can be seen from the temperature results there was no difference 

between male and female volunteers during the cold exposure. 

 

Preclinical research in rodents has suggested that cold-induced activation of BAT leads to the 

clearance of circulating triglycerides (10, 11). Here, we tested the hypothesis that also in 

humans, cold exposure would lead to a reduction in post-prandial triglyceride levels. We 

hypothesized that cold exposure would acutely lower triglycerides due to the increased usage 

of lipids during cold exposure in muscle and BAT. In addition, we wanted to test the 

hypothesis that cold exposure before a meal would deplete intracellular lipid stores in BAT, 

leading to an increased postprandial TG uptake after cold exposure to replenish lipid stores 

in BAT. Therefore, we performed postprandial triglyceride kinetics during and upon cold 

exposure. However, contrary to our hypothesis and in contrast with findings in animals, we 

observed an increase in both postprandial triglycerides and free fatty acids levels during cold 

exposure, which may partially be explained by an increase in lipolysis that occurs with acute 

cold exposure (8). Furthermore, precooling also did not lower postprandial triglyceride or 

fatty acids levels. Together, these results are in contrast to the findings in preclinical studies 

and suggest that in humans cold exposure does not lead to an enhanced lipid clearance.  



 

  

 

We previously showed that cold acclimation improved substrate metabolism and insulin 

sensitivity in T2D (17). Here, we found that postprandial glucose levels were lower with acute 

cold exposure and pre-cooling, which suggest that acute cold exposure could have a potential 

positive effect on glucose clearance and would be consistent with our previous finding of 

beneficial effects of cold exposure on insulin sensitivity (17). In the latter study, we showed 

that cold exposure can lead to an increase in skeletal muscle glut4 translocation, and it is 

tempting to speculate that enhanced GLUT4 translocation in muscle is responsible for the 

improved glucose clearance upon cold exposure in the current study.  

 

Although brown adipose tissue is a potent tissue, in humans the amount of brown adipose 

tissue may not be enough to affect lipid consumption and therefore lower plasma levels, as 

was discussed previously (38). Skeletal muscle would be another tissue that could contribute 

to lipid consumption during cold exposure due to increased leak respiration (39, 40), however 

we did not observe any effects in maximal coupled or uncoupled respiration between the 

thermoneutral and cold conditions. Additionally we also did not observe any difference in 

leak respiration (state 4o) in skeletal muscle tissue, which indicates an absence of any 

increased proton leak during acute cold exposure.  This absence is also observed in other cold 

exposure studies (23).  

 

Although in rodents, the acute cold exposure was enough to lower lipid levels (10), in humans 

the acute cold exposure without shivering did not lead to decreased lipid levels. Additionally 

there is the option that cold acclimation could have a significant effect on triglyceride 

clearance.  In cold-adapted winter swimmers it is shown that there are lower levels of markers 

of cardiovascular risk compared to non-adapted controls (41). Therefore future studies might 

focus on longer periods of cold exposure or on the effects of shivering thermogenesis, in order 

to investigate the potential of cold as a treatment option in the fight against cardiovascular 

diseases.  
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Supplementary data 

 
Supplementary table S1. Nutritional information of meal test shake  

Content Energy % 

Energy 755 kcal 100 

Fat  50.8 gr 60.6 

Saturated fat 26.1 gr 31.1 

Unsaturated fat 23.8 gr 28.4 

Cholesterol 0.9 gr 1.1 

Carbohydrate  62.3 gr 33.0 

Protein 10.9 gr 5.8 
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Supplemental figure 2. Skin temperatures during the meal tests for different genders 
A: Mean skin temperature during the different meal tests. B: Mean proximal skin 
temperature. C: Mean distal skin temperature, D: Mean proximal-distal gradient and E: Mean 
underarm-finger gradient. The meal test at thermoneutrality is indicated as the red line, the 
meal test during cold exposure as the blue line, and the meal test after cold as the green line. 
Dashed vertical lines show the time of consumption of the 1st shake at T0 and the 2nd shake 
at T240. n=14 (9 male, 5 female). Data is presented as mean ± SE. * indicates significant 
difference. ^  indicates trends towards significant difference. 
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Supplemental figure 3. Energy expenditure and substrate oxidation during the meal tests for 
different genders 
A: Energy expenditure, B: Fatty acid oxidation and C: Carbohydrate oxidation during the meal 
tests. The meal test at thermoneutrality is indicated as the red line, the meal test during cold 
exposure as the blue line and the meal test after cold as the green line. Dashed vertical lines 
indicate the time of consumption of the 1st shake at T0 and the 2nd shake at T240. n=14 (9 
male, 5 female). Data is presented as mean ± SE. * indicates significant difference. ^  indicates 
trends towards significant difference.  
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Supplemental figure 4. Plasma levels during the meal tests for different genders 
Plasma levels of A: Triglycerides, B: Free fatty acids and C: Glucose during the meal tests. The 
meal test at thermoneutrality is represented as the red line, the meal test during cold as the 
blue line and the meal test after cold as the green line. Dashed vertical lines indicate the time 
of consumption of the 1st shake at T0 and the 2nd shake at T240. n=14 (9 male, 5 female). Data 
is presented as mean ± SE. * indicates significant difference. ^  indicates trends towards 
significant difference. 
 

T
0

T
15

T
30

T
45

T
60

T
90

T
12

0

T
18

0

T
24

0

T
30

0

T
36

0

T
42

0

T
48

0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Timepoint

G
lu

c
o

s
e

 (
m

m
o

l/
L

)

Thermoneutral male During cold male Pre-cooling male

Thermoneutral female During cold female Pre-cooling female

C



 

  



 

  

Chapter 6 

Absence of 18F-Fluorodeoxyglucose uptake using 

PET/CT in Madelung’s disease: a case report 
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Madelung’s disease 

 
Multiple symmetric lipomatosis, also known as benign symmetric lipomatosis or Madelung’s 

disease is characterized by symmetric development of lipomas in the cervical-thoracic region. 

(1) Madelung’s disease mainly affects males and incidence is further increased with alcohol 

abuse early in life. (2-4) Clinically, patients can be divided in two sub-groups: Type 1, with 

symmetrical gross masses in the upper part of the body; and Type 2, with more general 

obesity. (5) The disease is further associated with neurological disturbances such as myopathy 

and cerebellar ataxia. (6) 

 

When researching genetic and protein markers in these lipomas, several studies detected 

uncoupling protein 1 (UCP1) in biopsies taken from these lipomas. (7) Normally, mitochondria 

build up a proton gradient across the membrane by combustion of substrates such as glucose 

or fatty acids. This proton gradient is used by ATPase to produce ATP. UCP1, when activated 

by adrenergic stimulation, uncouples this process, and energy is released in the form of heat. 

(8) UCP1 is specific for brown adipose tissue (BAT), which could mean that BAT plays a role in 

Madelung’s disease. Interestingly, these UCP1 positive cells derived from the lipomas did not 

respond to adrenergic stimulation, and may therefore be unable to produce heat. (7) In other 

samples taken from lipomas in patients suffering from Madelung’s disease there was 

evidence for mitochondrial dysfunction due to mutations in the mitochondrial DNA (mtDNA) 

such as m.8344A > G. (6) Mitochondrial dysfunction would lead to the same disturbed 

function of BAT as seen with the dysfunctional adrenergic stimulation. (6) 

 

Expression of UCP1 in lipomas associated with Madelung’s disease could suggest the presence 

of BAT. However due to defective BAT through lack of UCP1, we hypothesize no BAT activity 

will be measured via uptake of 18F-FDG following cold exposure. Furthermore, we expect to 

find the presence of UCP1 mRNA in the collected adipose tissue biopsies derived from the 

lipomas.  

 

A 68-year old male patient (BMI: 36.2 kg/m2), with the clinical diagnosis of Madelung’s disease 

was referred to the Maastricht University Medical Centre for research to detect the presence 

of active brown adipose tissue. Anamnestically, our patient extensively used alcohol form 

from the age of 16, contributing to the clinical diagnosis. The patient suffered from symmetric 

lipomatosis mainly around the upper arms and abdomen, with relative sparing of the cervical 

region (picture 1A). Recent laboratory results showed a near-to-normal thyroid function (TSH: 

4.8 mIU/L (ref 0.3-4.6mIU/L); fT4: 15.3 pmol/L (ref 10-23 pmol/L). The patient further had not 

used beta-blockers in the last year. 

 

To evaluate the presence and activity of BAT, the patient underwent an individualized cooling 

procedure, after which an 18F-FDG-PET/CT (Gemini TF PET/CT; Philips, The Netherlands) was 



 

  

performed, as described before. (9) Before and after the cooling procedure energy 

expenditure was measured using indirect calorimetry (ventilated hood) to determine non-

shivering thermogenesis (NST).  

 

The patient arrived at the research institute at 8.30 AM, and only consumed a light breakfast 

at 6.00 AM. At 8.45 AM the patient ingested a telemetric pill (CorTemp HT150002; HQ Inc.) 

to measure core temperature. At the same time wireless temperature sensors (iButton; 

Maxim Integrated Products, San Jose, CA) were attached at the 15 International Organization 

for Standardisation (ISO) – defined sites to measure skin temperature. An intravenous 

cannula was placed in the antecubital vein in the right arm. The patient was wrapped in a 

water-perfused suit (ThermaWrap Universal 3166; MTRE Advanced Technologies Ltd., Yavne 

Israel). The water-perfused suit was connected to two cooling installations (Blanketrol III; 

Cincinnati Sub-Zero, Sharonville OH). 

 

The water-perfused suit was heated to 36 °C to provide a thermoneutral condition. Indirect 

calorimetry was performed using a ventilated hood system (EZCAL; Maastricht Instruments, 

Maastricht, the Netherlands) to measure resting energy expenditure. After this 

thermoneutral period, the cooling procedure was started. The water temperature was 

lowered with 4 °C each 15 minutes, with concomitant measuring of the blood pressure and 

pulse. When the patient started to visibly shiver, the temperature was heated to 34 °C for 5 

minutes to stop the shivering. A stable temperature was reached at 27 °C. After the stable 

temperature was reached, a second indirect calorimetry was performed. At 12.45 PM, a bolus 

of 77 MBq of 18F-FDG was injected intravenously. After the injection the patient was 

instructed to lie still for 1 hour at the stable water temperature of 27 °C.  

 

After 1 hour, at 13.45 PM, the PET/CT protocol was performed with a low-dose CT scan 

(120kV, 30 mAs), immediately followed by a static PET scan (6 bed positions, 4 minutes per 

position) covering the area from the skull to the illiac crest.  

 

After the 18F-FDG-PET/CT scan, two adipose tissue biopsies were taken under local 

anaesthesia. One biopsy was taken at the lateral side of the right upper arm at the location 

of the lipomas. The second biopsy was taken from the abdominal subcutaneous fat deposit, 

just right of the umbilical as a control.  

 

The adipose tissue samples were collected on a water-permeable membrane and rinsed with 

demi water. Afterwards samples were sealed in paraffin or frozen in melting isopentane for 

further analysis. RNA from the adipose tissue was extracted using Trizol reagent followed by 

protocol described in the RNeasy kit from Qiagen (Hildenberg, Germany). UCP1 mRNA 

expression was determined using a CFX384 Touch Real-Time PCR Detection System from 

BioRad Laboratories (Hercules, CA) with a Taqman gene expression assay (Hs00222453_m1) 

as described before. (10) 



 

  

 

Cold exposure increased resting energy expenditure from 5.2 kJ/min to 9.7 kJ/min. Though 

the protocol was designed to induce only non-shivering thermogenesis, the patient did shiver 

occasionally in the final stages of the cooling procedures. Non-shivering thermogenesis plus 

probably some shivering thermogenesis (as the per cent increase in energy expenditure 

during cold exposure above the resting energy expenditure) was 53.6%.  

The respiratory quotient remained 0.83. Core temperature was 37.3 °C during the 

thermoneutral period and dropped to 36.5 °C during cold exposure. Following cold exposure, 

the mean skin temperature dropped from 34.0 °C to 32.1 °C.  

 

The 18F-FDG-PET/CT scan performed after the cooling procedure showed no uptake of 18F-

FDG in the adipose tissue depots in the cervical-thoracic region (Figure 1B). Furthermore, no 

uptake of 18F-FDG was observed in both upper arms.  

 

 
Figure 1.  
A: Clinical view of the patient.  
Noticeable is the subcutaneous lipomatosis in both upper arms and abdomen, with relative 
sparing of the cervical region. B: PET image using 18 F-FDG following the cooling procedure. 
The 18 F-FDG uptake in the cervical region is caused by active muscle tissue due to shivering 
(filled arrows). Note the absence of 18 F-FDG uptake in the deep cervical adipose tissue and 
lipomas in both upper arms (clear arrows) 
 

An adipose tissue biopsy was derived from the lipoma and subcutaneous white adipose 

tissue. Biopsies from sites were sealed in paraffin and afterwards stained with haematoxylin-

eosin (HE). The HE-staining showed large lipid droplets in both biopsies. The tissues from the 

arm (Figure 2) and the abdominal subcutaneous fat deposit (Figure 3) both showed the 



 

  

microscopic structure of white adipose tissue (WAT) and not of BAT. Subsequently, we 

examined UCP1 mRNA expression in both biopsies. Cq values for the samples derived from 

the lipoma and subcutaneous white adipose tissue were 32.9 and 33.7 respectively. As a 

reference, we included a human hibernoma, which had a Cq value of 19.4.  

 

 
Figure 2: Adipose tissue from lipoma of right upper arm (Magnification: 200x) 

 

 
Figure 3: Subcutaneous white adipose tissue from abdomen (Magnification: 200x) 

 

In earlier studies, the ectopic adipose tissue in Madelung’s disease was UCP1 positive, 

although the typical cellular structure of BAT was absent, as was the response to adrenergic 

stimulation. (6, 7) One theory behind this is that the ectopic adipose tissue in Madelung’s 

disease is caused by a defect in the adrenergic pathway in brown adipocytes. Although UCP1 

is present, adrenergic stimulation does not increase UCP1 expression in Madelung’s disease. 



 

  

(7) The lack of UCP1 expression would impair mitochondrial uncoupling that could lead to BAT 

thermogenesis. The impaired thermogenesis would mean that the body is less able to protect 

the core temperature in a cold environment. This would mean that the sympathic nervous 

system activity will remain present. This would in turn lead to proliferation of adipocytes, 

specifically at the locations where BAT is normally found, such as the cervical, inter-scapular 

and para-renal regions. (7) 

 

Our patient showed normal physical responses to cooling, as seen in the sustained core 

temperature and the temperature gradient in the lower arm. Energy expenditure increased 

upon cold exposure as expected under conditions of normal thermoregulation. Heart rate and 

blood pressure increased slightly upon cold exposure. Also these physical responses can be 

expected under conditions of normal thermoregulation in humans following cold exposure. 

  

As hypothesized the 18F-FDG-PET/CT scan showed no uptake of the 18F-FDG tracer in neither 

the cervical-thoracic region nor the upper arms, where the ectopic lipomas were situated in 

our patient. Based on the 18F-FDG-PET/CT scan, no active BAT was found. Based on the 

hypothesis that a dysfunctional adrenergic pathway leads to less UCP1 expression and 

reduced or absent thermogenesis, this could explain the lack of metabolic activity upon cold 

exposure and the lack of tracer uptake in the normal BAT regions in our patient. 

 

In line with the 18F-FDG-PET/CT results, the adipose tissue taken from the right upper arm 

showed a typical morphology of WAT, as did the control tissue taken from the abdominal 

adipose tissue (Figure 2 and 3). The qPCR performed on these tissues showed no presence of 

UCP1. Due to the clinical and genetic phenotypes described in the literature, it is possible that 

our patient has yet another causal mechanism. (5-7) This could potentially explain why we 

were unable to find any sign of BAT presence in the biopsy material. 

 

The use of an 18F-FDG-PET/CT scan combined with the cooling procedure is an established 

method to detect the presence of active BAT. (9) Though the prevalence in young healthy 

(lean) adults is high, BAT is not always detected in all lean subjects. (10) In addition in studies 

with elder and obese subjects, the prevalence of BAT is lower in both obese and elder subjects 

compared to young lean subjects. (9) This may explain the absence of active BAT in our 

patient, whose BMI was 36.2 kg/m2, in the cervical-thoracic region where BAT is usually found 

in humans.  

 

The supposed defect adrenergic pathway in Madelung’s disease could also explain the 

absence of tracer uptake in both upper arms. In the adipose tissue biopsies, we only found 

cells resembling white adipocytes without any expression of UCP1 mRNA. An in vitro model 

with primary cultured adipocytes derived from patient adipose tissue biopsies could be used 

to examine UCP1 expression under basal or after norepinephrine stimulation. A potential 

culture of primary adipocytes would be another option to evaluate the dysfunctional 



 

  

adrenergic pathway. However these experiments would require freshly isolated adipose 

tissue biopsies.  

 

Concluding, in a patient with clinical Madelung’s disease we found no active BAT, neither in 

the lipomas nor in the cervical-thoracic region. Adipose tissue biopsies were absent of 

multilocular adipocytes associates with BAT, while qPCR revealed no presence of UCP1. 

 

Although Madelung’s disease could be caused by defective stimulation of BAT, we found no 

proof of any BAT presence in our patient. Further research could focus on the causal 

mechanism for Madelung’s disease and the possible relationship between the lipomatosis 

and BAT.  
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Chapter 7 

General discussion 
 



 

  

Introduction 

 
Under thermoneutral circumstances the basal metabolism provides enough heat during 

resting conditions to maintain the body core temperature (1). During these conditions the 

body temperature regulates the heat loss of the body by changing blood perfusion in the skin 

and extremities. The heat loss is increased in higher temperatures by vasodilation, and 

decreased in lower temperatures by vasoconstriction.  In the cold the body can, in addition, 

increase the heat production (1). This can be achieved by two means: shivering thermogenesis 

(ST) and non-shivering thermogenesis (NST). The non-shivering thermogenesis is effected by 

activation of brown adipose tissue (2), at least in rodents. To which extend brown adipose 

tissue is involved in NST in adult humans remains a question. 

 

Cold exposure activates the sympathic nervous system, with nerve endings present in depots 

of brown adipose tissue. Noradrenaline release takes place in these nerve endings after 

stimulation by cold, which in turn activates beta-3-adrenergic receptors in the membrane of 

brown adipocytes (3, 4). This leads via a cascade of reactions to the activation of the 

uncoupling protein 1(UCP1) found in the inner membrane of the mitochondria in the brown 

adipocyte. The mitochondria break down substrates such as glucose and fatty acids to build 

up a proton gradient across the mitochondrial inner membrane. Instead of using the potential 

energy from this proton gradient to produce adenosine tri-phosphate (ATP), brown 

adipocytes release heat through a regulated means of uncoupling. This accomplished by UCP1 

(3). The potential energy of the proton gradient is then released as heat (5), which will then 

protect the core body temperature from lowering, at least in small mammals.  

 

In 2009 several research groups presented independently clear proof of depots of functionally 

activated brown adipose tissue in adult humans (6-8). However, the amount of BAT, detected 

by metabolic imaging, is relatively small compared to little mammals. The reason may be that 

humans have a relative low surface to volume ratio linked to their body size, which means 

there will be less heat loss in the cold. Additionally, in our modern society, there is less need 

for active brown adipose tissue as we are less exposed to cold temperatures.  

 

In the majority of these studies, radioactive tracers such as 18F-FDG are used in combination 

with positron emission tomography (9, 10). 18F-FDG can be used to show the uptake of 

glucose by active tissues, however it does not provide detailed information regarding the 

metabolism of brown adipocytes as seen in the review presented in Chapter 2 of this thesis. 

Other metabolic studies have used different radio-isotope tracers, which also show that the 

total contribution of BAT to whole body energy metabolism is small (11) . Despite these 

results, BAT can still play an important role in substrate metabolism. 

 

  



 

  

The effect of non-shivering cold acclimation  

 
Another study of this thesis focused on the effect of mild cold acclimation without shivering 

during the daily cold exposure. A twelve-day cold acclimation study was performed in patients 

with type 2 diabetes mellitus, as described in chapter 5.  In this study we took special care 

that any shivering was prevented. In order to separate the effect of acute cold and cold 

acclimation we performed the insulin sensitivity measurements on the day without cold 

exposure, after the cold acclimation period. In this study, we did not see any improvements 

in insulin sensitivity. Notably, there was also no translocation of active glucose transporters, 

such as GLUT4, to the membranes of the skeletal muscle cells. The absence of the GLUT4 

translocation is most likely responsible for the lack of improvement in insulin sensitivity.  

 

Next to substrate utilization during cold exposure, there is an increased release of substrates 

to fuel the increased energy expenditure. While the increased energy expenditure and 

substrate oxidation might seem opportune, the results from the acute cold exposure study 

show that there are actually higher blood levels of lipids and fatty acids. This would mean that 

the increased consumption of fatty acids does not match the increased release into the blood 

stream. More prolonged cold exposure, as in cold acclimation could result in an decrease in 

plasma lipid levels , especially in view of the relatively small amount of active brown adipose 

tissue in humans. Research by Blondin et al. showed an increased oxidative capacity in BAT 

after shivering cold acclimation, which indicates that more severe cold or a prolonged 

exposure period could increase the contribution of BAT to human energy and substrate 

metabolism (15). Cold acclimation could thus improve the metabolic activity of brown 

adipose tissue, which could increase the bodily response to cold exposure. This could lead to 

more improvements in glucose and lipid metabolism, as well as maintaining these 

improvements for a longer time period. Additionally, these improvements may persist even 

when the cold stimulus has been removed.   

 

In conclusion, despite earlier mild cold acclimation studies, that included (low) shivering 

levels, our study showed that actual non-shivering cold acclimation may be insufficient to 

induce improvements in glucose metabolism in patients with type 2 diabetes mellitus. 

 

As indicated above non-shivering thermogenesis (NST) is attributed mostly to brown adipose 

tissue activation, while shivering thermogenesis (ST) is attributed to skeletal muscle activity. 

More prolonged cold exposure leads to adaptations by the body, which is known as 

acclimation. Cold acclimation leads to an increase in BAT volume and activity, as shown by 

Hanssen et al and by Van der Lans et al. (12, 13). Concomitantly a decrease in shivering activity 

is seen, which indicates that non-shivering thermogenesis is increased during acclimation (14, 

15).  The increased energy expenditure during cold acclimation has to be compensated by 



 

  

increased consumption of substrates such as fatty acids and glucose. This leads to the 

question which effects cold acclimation could have on glucose- and lipid metabolism.  

 

 

The role of brown adipose tissue activation on lipid- and glucose 

metabolism 

 
As brown adipose tissue is activated during cold exposure substrates are used to produce the 

required heat. Fatty acids are the foremost substrate present in brown adipocytes. This can 

be observed by CT imaging, showing a decrease of lipid internal stores in brown adipocytes 

after acute cold exposure (16, 17), and by the increase in fatty acid uptake by BAT during cold 

exposure, as seen in animals (18) and with fatty acid tracers in humans (19). Additionally,after 

cold exposure lower lipid and cholesterol levels were observed in adult humans (19, 20). As 

cold exposure increases the uptake and consumption of fatty acids in BAT, we hypothesized 

that during cold exposure lipid levels in the blood will decrease.  

 

Therefore in this thesis, in chapter 4, we investigated if during acute non-shivering cold 

exposure and after pre-cooling post-prandial serum lipid levels in humans will be reduced. 

Secondly, it was studied if these changes in blood lipids could be linked to brown adipose 

tissue presence and activity. Additionally we also investigated the role of skeletal muscle in 

acute non-shivering thermogenesis, as it has been shown that in response to cold 

mitochondrial uncoupling occurs skeletal muscle (21). Notably, we observed that acute cold 

exposure increased post-prandial lipid levels, in contrast to the data from mice studies. This 

increase can be attributed to either an enhanced intestinal uptake from dietary lipids or to 

increased lipolysis (22) during cold. The lipolysis during acute cold could impede any 

improvements seen by the increased uptake and consumption of fatty acids by BAT 

activation.  

By using two meals during each test day, we intended to study the so-called ‘second meal’ 

effect, which refers to the observation that postprandial lipid levels normally are higher after 

the second meal. During the first meal lipids can be temporarily stored in the intestines. 

However, the second meal effect was present during both thermoneutral and cold conditions. 

This indicates that there are still lipids retained after the first meal, even during cold.  

 

Glucose is also taken up by brown adipose tissue, which is then used as substrate for 

maintaining the mitochondrial proton gradient or in anaplerotic reactions, although the exact 

role of glucose has not yet been established (11). Therefore, BAT could serve as a glucose sink, 

reducing plasma glucose levels, which is favourable for type 2 diabetes mellitus. Additionally, 

cold acclimation has been shown to increase insulin sensitivity. By using a hyperinsulinemic 

euglycemic clamp technique (23) Hanssen et al observed an improvement in insulin sensitivity 

after 10 days of cold acclimation in both obese and diabetic volunteers (24).  However, the 



 

  

improvement in insulin sensitivity was not correlated with BAT activity, although it should be 

noted that in type 2 diabetes the use of FDG-PET/CT may underestimate the amount of BAT. 

The acclimation did have an effect on skeletal muscle, ie. translocation of glucose transporters 

(GLUT4)to the SM-membrane was increased. Some shivering during the cold acclimation 

occurred, and may be contraction of the skeletal muscles was responsible for the 

improvement in insulin sensitivity. 

 

 

Limitations of study design 

 
As mentioned in the previous paragraph and in this thesis, different types of study design 

were used. As mentioned, in chapter 3, a randomized double blind placebo-controlled study 

was performed. The use of this type of study design allows for control of potential research 

bias. In comparison chapters 4  and 5 describe prospective cohort studies which did not 

include control groups. This indicates a higher potential for bias, as there were no control 

groups in these studies. However this type of study design still allows for adequate research.  

 

Finally, in chapter 6 the results from a case report are presented. As it describes a singular 

case,  the results should not be generalized to the entire population  and can lead to over-

interpretation. However, this type of study design can be used to generate new ideas and 

hypotheses for future investigations.  

 

 

The role of brown adipose tissue in human energy and substrate 

metabolism  

 
In this thesis the main focus has been on the specific role of brown adipose tissue activation 

and non-shivering thermogenesis in the energy and substrate metabolism of adult humans.  

Our results from non-shivering cold exposure and cold acclimation are in clear contrast to 

previous studies involving mice. This can be attributed to the much higher amount of active 

brown adipose tissue in mice compared to adult humans. Additionally it indicates that non-

shivering acute cold exposure and short-term acclimation are insufficient to improve human 

metabolism, and that shivering thermogenesis could be the solution. While shivering 

thermogenesis refers to non-voluntary contractions of skeletal muscles, evidence shows that 

skeletal muscle cells exhibit a form of uncoupling thermogenesis as well (21). The effects of 

cold acclimation with shivering could thus be similar to the effects of exercise. Evidence for 

this can be found in a recent publication, where similar gene expression profiles were found 

after exercise and cold acclimation with shivering (25).  The link between BAT and skeletal 

muscle, in regards to their role in thermogenesis, is still a matter of debate. Overall the 



 

  

contribution of BAT to energy and substrate metabolism is relatively small, as seen in 

metabolic imaging (11, 26, 27).  

 

As BAT does not seem to fulfil a large role in human energy and substrate metabolism, BAT 

may have alternative functions.  One such function could be linked to the localization of 

brown adipose tissue depots. Next to the depots in the neck region, BAT is also found next to 

the vertebral column (11). This would indicate that BAT is involved in keeping paravertebral 

nerves and ganglia warm. This would ensure that nerve conduction speed is maintained, in 

the ganglia and paravertebral nerves. Although this only a small part of the entire neural track 

between the central and peripheral nervous system, BAT could allow the nerves to maintain 

optimal functionality during cold exposure.  

 

In addition to direct heat production, brown adipose tissue could also function as an 

endocrine tissue (28), and thus be involved in coordinating thermogenesis in skeletal muscle. 

Several studies have focused on endocrine factors produced by BAT, such as FGF21 (29, 30). 

FGF21 is secreted by BAT and can increase hepatic fatty acid oxidation and insulin sensitivity, 

which could help explain the results seen in clinical studies (31). As both tissues are active 

during non-shivering cold exposure, a potential interplay between these tissues seems logical 

(29, 30). Another example is triiodothyronine, or activated thyroid hormone T3, which is 

produced by active BAT (32) and is involved in catabolic processes in the entire body. This 

would show that BAT could influence other tissues to contribute to thermogenesis, effectively 

regulating the bodily heat production during cold exposure. Another potential hormone is 

Neuregulin 4 (NRG4) which is produced by brown adipocytes during cold exposure. NRG4 can 

decrease de novo lipogenesis in hepatocytes (31) making it an interesting potential hormone 

in the fight against dyslipidaemia. The endocrine products of brown adipocytes could thus 

influence whole body metabolism during cold exposure, making it an interesting topic in this 

field. Additionally, it would be interesting to investigate more deeply the metabolic interplay 

between BAT and other tissues, such as skeletal muscle tissue and liver.  More severe and 

even longer periods of cold exposure could therefore be used to push the human body even 

further, with increased energy expenditure and substrate oxidation.   

 
 

Table 1. Function of BAT 

Energy metabolism Non-shivering thermogenesis 

Substrate metabolism Uptake and oxidation of glucose and lipids 

Heating  Heating of paravertebral nerves and ganglia 

Endocrine Stimulating hepatic metabolism/ increasing thermogenesis 

(e.g thyroid hormones) 

Table 1. An overview of the different functions of human BAT. 



 

  

In conclusion the results from this thesis show that non-shivering thermogenesis, during 
acute cold exposure and after a 2-week period cold acclimation did not lead to metabolic 
improvements. This indicates that the uncoupling thermogenesis in brown adipose tissue and 
skeletal muscle is insufficient in adult humans to improve lipid and glucose metabolism. What 
remains unknown for now is the potential of BAT after more prolonged cold acclimation, and 
what can be expected after more severe cold exposure with shivering thermogenesis. 
Additionally, the interaction between BAT and other tissues, such as skeletal muscle, deserves 
more attention in future research.   
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Societal relevance 

 
Our modern Western lifestyle, hallmarked by an excess of food intake and lack of exercise, 

and characterized by low levels of 24h energy expenditure, presents us with an increase in 

patients with the metabolic syndrome. The metabolic syndrome is characterized by obesity, 

type 2 diabetes mellitus and cardiovascular disease. The prevalence of obesity has increased 

by almost 80%, from 7% in 1980 to a staggering 12.5% of the population worldwide in 2015 

with approximately 650 million people being obese (1).  Complications of obesity such as 

dyslipidaemia, type 2 diabetes mellitus and atherosclerosis are currently among the leading 

causes of death in the World with an estimated 19.5 million deaths for diabetes mellitus and 

cardiovascular diseases (2).  

 

In the Netherlands, a similar trend is occurring with an estimated 50,2% of inhabitants who 

are either overweight or obese (3), indicating that the Netherlands are not immune to the 

worldwide trends.  This is also seen in the high occurrence of patients with metabolic 

syndrome.  

 

To combat metabolic syndrome, it is highly relevant from a physiological perspective to find 

ways to counteract this diseases and to search for treatments and preventive measures.  In 

general, many interventions have been focused on improving glucose and lipid metabolism 

by using exercise and dietary restrictions. However, long-term adherence to exercise training 

programs and dietary regimes is generally poor, warranting the exploration of alternative 

strategies. One such strategy is cold exposure and the activation of brown adipose tissue 

(BAT). The discovery of functional active brown adipose tissue in adult humans in 2009 (4-6) 

boosted research for the treatment of metabolic syndrome.  

 

In this thesis, the use of cold exposure to mitigate insulin resistance in patients with T2DM 

was investigated. Additionally the effects of cold exposure with potential activation of BAT on 

post-prandial hyperlipidaemia were studied, which is of interest to reduce the risk of 

developing metabolic syndrome. In turn this would lead to a reduced chance of developing 

cardiovascular diseases such as myocardial infarction.  

 

Thus, cold exposure can be seen as an addition therapy to common lifestyle interventions. 

Cold exposure could also be an alternative for exercise for patients who have limited options 

for physical exercise. Finally, by applying lower temperatures in in buildings, a healthier 

indoor environment can be created for virtual all people, potentially reducing the chance of 

developing obesity or metabolic syndrome.  

 

Though the conditions tested in the studies of this thesis did not always show positive effects 

on metabolic health parameters, more research in this field is warranted to further develop 



 

  

metabolic therapies. Thereby, both a cold therapy and/or a healthier living environment can 

potentially be created, relieving the societal burden of diabetes mellitus and cardiovascular 

disease by reducing medication use, hospitalization rates, and the costs for society. 

 

 

Economic relevance 

 
Due to the increasing number of people with metabolic syndrome, dyslipidaemia and type 2 

diabetes mellitus, there is an increasing financial burden on society.  It is estimated that in 

2010 about 1.62 billion euros are spent on obesity alone, and approximately 1.14 billion euros 

on diabetes (7). Since the health care in the Netherlands is partially financed by the entire 

adult population, there are a number of healthy people who are also paying for the medical 

costs of the patients suffering from obesity and diabetes. It is therefore reasonable to 

investigate potential methods of reducing the health care costs. Nowadays, a healthy diet and 

physical activity are established alternative therapies against metabolic syndrome. However 

these therapies are often difficult to maintain for a prolonged period and might not be useful 

for everyone. This thesis is aimed at alternative therapies in the form a healthy thermic 

environment or cold exposure. We expect these alternative strategies to lead to a reduction 

in the number of patients with metabolic syndrome, in the costs of the health care system 

and the amount of medical leave.   

 

 

Practical Relevance 

 
As shown in this thesis we often make use of direct cold exposure using a water-perfused suit 

to investigate the effects on metabolic health. This kind of instruments can potentially be 

used for a cold therapy. In a daily-life situation this could be impracticable, as it would mean 

that people would have to commit to purchasing suits and the expensive and large cooling 

installation. Further research should thus be aimed at practical implementations, such as 

lowering heating in buildings, creating more dynamic indoor conditions, or developing cheap 

cooling instruments in order to (temporally) reduce ambient temperatures.  

 

A potential limitation is the expectation that participants often experience the temperatures 

used in this thesis as very cold and unpleasant. This could make maintaining these 

temperatures a challenge for the practical application. However, research points out that test 

subjects can adapt to the colder environments.   

 

Therefore the application of cold exposure should be done in an easy-to-use manner, such as 

cold exposure in normal living situations. This could be achieved for instance in our working 

environments, such as offices, or in our home situation, by lowering the thermostat in winter 



 

  

or using cooling during summer periods. Another option is the use of saunas or public bathing 

houses with cooling baths. A regular use of easily accessible and acceptable cold conditions 

could be used in addition to the existing lifestyle measures. 

 

 

Future research and hopes 

 
Based on the research presented in this thesis cold exposure leading to non-shivering 

thermogenesis can have positive effects on metabolism and health. However, the conditions 

studied in this thesis revealed marginal effects in obese patients with type 2 diabetes mellitus. 

It could be that a relatively short period of  mild cold exposure of 10 days may be too short to 

have any significant metabolic effects. It would be interesting for future research to look into 

the effects of prolonged exposure, as in several weeks or even months. This could be studied 

in an office environment perhaps were prolonged exposure could be tested in a larger 

population. Additionally, the cross talk between brown adipose tissue and other tissues such 

as liver and skeletal muscle needs further attention, as brown adipose tissue could have 

endocrine functions. This would include the secretion of hormones which can have metabolic 

effects in other organs. 

 

Furthermore, exposure to more extreme cold can be an interesting topic as the higher 

metabolic demand of shivering could have more effects when compared to only mild cold 

exposure. In the future this could perhaps lead to the development of new interventions to 

improve metabolic health in our obese society.  
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Summary 

 
Modern society is confronted by a significant increase in the incidence of metabolic 

syndrome, which is characterized by high body fat mass, insulin resistance and 

hyperlipidaemia. The increase in total body fat mass can be attributed to a shift in the human 

energy balance. The human body takes in energy by the food and uses it for many life 

functions, while the excess amount is stored in the form of fat and glycogen. A shift towards 

less energy use, e.g. by reduced physical activity, and an increased energy intake can thus 

lead to the accumulation of fat. When body fat is present in excess amounts, it is referred to 

as obesity. This increase in fat tissue, especially in the abdominal region, is linked to the 

increase in metabolic disturbances such as elevated lipid levels and insulin resistance. The 

disturbed metabolism in turn will lead to increased atherosclerosis, affecting both small 

(micro) and large (macro) blood vessels. The increased atherosclerosis explains the high 

incidence of both microvascular complications, such as blindness, renal failure, and 

neuropathy, and macrovascular complications such as myocardial infarctions and 

cerebrovascular incidents. The high incidence of obesity, type 2 diabetes mellitus, and 

vascular complications places a huge burden on our society, both in financial costs as well as 

on the physical care system. Therefore new research is warranted to investigate potential 

methods to decrease this burden on our society. 

 

Increasing energy expenditure could be a potential solution to prevent obesity and improve 

metabolism. Besides using exercise to increase energy expenditure, another option is to 

increase the energy expenditure related to maintaining a stable body temperature. As the 

body is exposed to cold, energy expenditure increases to maintain a stable body temperature. 

Thus, in a cold environment, energy expenditure is increased by heat production, otherwise 

known as cold-induced thermogenesis. During mild cold without shivering, this function is 

performed by brown adipose tissue (non-shivering thermogenesis). This tissue is present in 

humans, in small depots, can utilize substrates such as lipids to produce heat.  In rodents, the 

huge amount of substrates used by active brown adipose tissue can be used to treat 

dyslipidaemia and obesity. We reviewed the function of brown adipose tissue in Chapter 2, 

as well as the potential contribution of this tissue to human metabolism.  Brown adipose 

tissue could provide an answer to the obesity pandemic and the related metabolic 

disturbances.  

 

Increasing brown adipose tissue activity and metabolism is thus an interesting option to 

combat obesity. In addition to the cold, a possible option is stimulation by means of 

nicotinamide riboside, a vitamin B3 precursor. In Chapter 3, we present the results of 

nicotinamide riboside suppletion in humans, both in vitro and in vivo. The nicotinamide 

riboside suppletion did lead to an increase in oxidative capacity in both human brown adipose 

tissue cells in vitro and in living mice. However it did not affect energy expenditure or brown 



 

  

adipose tissue activity in adult humans with obesity. These results show that the promising of 

nicotinamide riboside in vitro and in mice may not have any effect on the whole human body. 

The lack of results in adult humans could be due to the low dosage of nicotinamide riboside. 

Another explanation could that obese humans have a relatively low amount of active brown 

adipose tissue. 

 

Increasing the capacity of brown adipose tissue could be the answer to obesity and type 2 

diabetes mellitus. In Chapter 4, we evaluated the effects of prolonged cold exposure, or cold 

acclimation on insulin sensitivity in adult humans with obesity and type 2 diabetes mellitus.  

In contrast to other studies, special attention was given to prevent shivering. After a twelve-

day period of intermittent mild cold exposure, without shivering, we observed no 

improvements in insulin sensitivity when measured with a hyperinsulinaemic euglycaemic 

clamp technique. Neither did we observe any changes in glucose uptake or gene expression 

in skeletal muscle cells. This is in clear contrast to results from previous experiments involving 

cold acclimation. As there was evidence of muscle activity (shivering) in the earlier studies, 

the results in this thesis point out that non-shivering cold acclimation does not lead to 

metabolic improvements.  

 

Next, we examined the effect of acute non-shivering cold exposure on lipid metabolism in 

young adult humans, as described in Chapter 5. It was expected that when brown adipose 

tissue is activated, substrates such as fatty acids are utilized to maintain metabolic heat 

production. This effect could be revealed by lowering post-prandial lipid levels in the blood 

circulation, which are typically elevated after a meal. Therefore a double high-fat meal test 

was used to study post-prandial lipid metabolism in order to compare lipid levels between 

thermoneutral and cold conditions. Despite an increase in whole-body fat oxidation during 

cold conditions, there was no significant decrease in post-prandial lipid levels and there was 

no correlation between substrate utilization and the amount of active brown adipose tissue. 

Additionally, no effects of the non-shivering cold exposure were observed on skeletal muscle 

fibers in vitro. Long-term effects on, for example, atherosclerosis have yet to be studied. 

 

Finally, we studied the role of brown adipose tissue in Madelung's disease. As described in 

Chapter 6, Madelung’s disease is characterized by symmetric lipomatosis, by a yet 

unexplained pathophysiology. One explanation is that dysfunctional brown adipose tissue, 

through genetic mutations, is responsible for the lipomatosis. We therefore took adipose 

tissue biopsies from the lipomatosis and the abdominal tissue and compared these on both 

genetic expression and microscopic view. We found no relationship with active BAT and were 

therefore unable to find an explanation for the lipomatosis in our patient.  

 

In conclusion, we have studied the potential of non-shivering cold exposure and BAT 

activation during acute exposure and after cold acclimation. In both studies, non-shivering 

cold exposure did not lead improvements of the metabolic parameters under study. Most 



 

  

likely the lack of metabolic improvements can be attributed to the relatively small amount of 

active BAT that adult humans possess. Since humans have significantly more muscle tissue, 

shivering in more extreme cold can have more systemic effects. This could mean that periodic 

shivering is necessary for the development of an alternative treatment of metabolic 

syndrome. 

 



 

  

  



 

  

  



 

  

Samenvatting 
 

 
  



 

  

Samenvatting 

 
In de huidige samenleving is er een stijgende lijn te zien in de incidentie van het metabool 

syndroom, wat gekenmerkt wordt door een toename in vet massa, een verstoord lipide (vet) 

metabolisme en insuline resistentie. De toename in vetmassa is te verklaren door een 

positieve energie balans in het menselijk lichaam. Het lichaam neemt energie op in de vorm 

van voeding en gebruikt energie voor de vele levensfuncties. Een  overschot aan energie 

wordt opgeslagen als adipeus weefsel en glycogeen. Door een afname in energie verbruik en 

een verhoogde energie intake, door middel van een verhoogde voedsel intake, kan dit leiden 

tot stapeling van vetweefsel. Deze stapeling van vetweefsel, voornamelijk in de abdominale 

regio, is gelinkt aan een verstoord metabolisme zoals verhoogde lipide bloedspiegels en 

insuline resistentie. 

De insuline resistentie leidt tot de ontwikkeling van type 2 diabetes mellitus, wat zich 

kenmerkt door verhoogde bloed glucose (suiker) waardes.  

 

Het ontregelde metabolisme van glucose en lipiden leidt tot een verhoogde kans op 

atherosclerose.  Dit verklaart de hoge incidentie van micro vasculaire complicaties zoals 

blindheid, nierfalen en neuropathie maar ook de macro vasculaire complicaties zoals myocard 

infarcten en cerebrovasculaire incidenten. De hoge incidentie van obesitas, type 2 diabetes 

mellitus en vasculaire complicaties heeft een grote invloed op onze samenleving. Dit is vooral 

zichtbaar in de hoge financiële kosten aan zorg en de belasting op ons zorgsysteem.  

 

Zoals hierboven aangegeven is het verhogen van het energiegebruik een  mogelijke optie ter 

preventie van obesitas. Naast lichamelijke beweging kan blootstelling aan een lage 

omgevingstemperatuur het energiegebruik van het lichaam verhogen. Hierdoor wordt het 

lichaam gedwongen om het energie verbruik van het lichaam te verhogen om de 

lichaamstemperatuur stabiel te houden. Deze toename in energie verbruik wordt geduid als  

koude-geïnduceerde thermogenese, en wordt uitgevoerd door bruin vet bij milde kou (zonder 

te rillen, z.g. non-shivering thermogenese), en door rillen bij lagere temperaturen (shivering 

thermogenese). Bij mensen is bruin vet in kleine hoeveelheden aanwezig en kan het 

substraten zoals lipiden verwerken tot warmte. Het verwerken van deze substraten kan 

bijdragen aan het behandelen van obesitas en type 2 diabetes mellitus. De functie van bruin 

vet weefsel wordt beschreven in hoofdstuk 2, evenals de mogelijke bijdrage en rol van bruin 

vet in de menselijke stofwisseling. 

 

Zoals hierboven beschreven kan het vermeerderen van de hoeveelheid bruin vetweefsel 

bijdragen aan het verbeteren van metabolisme. Naast kou is een mogelijke optie stimulatie 

door middel van nicotinamide riboside, een vitamine B3 precursor. Nicotinamide riboside 

stimuleert in vitro mitochondriale activiteit en zou zodoende ook de mitochondriën in bruin 

vet kunnen stimuleren. In hoofdstuk 3, worden de resultaten van nicotinamide riboside 



 

  

suppletie gepresenteerd. De suppletie van nicotinamide riboside resulteerde in een 

verhoging van de oxidatieve capaciteit in zowel menselijke bruin vet cellen als in muizen. 

Echter was er geen effect op het energie gebruik en bruin vet activiteit in volwassenen met 

obesitas. Dit laat zien dat veelbelovende supplementen die werken in vitro en in 

muismodellen, niet per se effectief zijn op het gehele lichaam. Dit kan mogelijk worden 

verklaard door een te lage dosering aan nicotinamide riboside in de proefpersonen. De ten 

opzichte van muizen relatief kleine hoeveelheid bruin vet weefsel in mensen kan hier ook een 

mogelijke verklaring voor zijn.  

 

Een andere mogelijkheid om bruin vet te vermeerderen is langdurige regelmatige 

blootstelling aan kou zijn, ook wel bekend als koude-acclimatisatie. In Hoofdstuk 4, worden 

de effecten van herhaalde blootstelling aan kou, beschreven in een populatie van 

volwassenen met obesitas en type 2 diabetes mellitus. Na een periode van twaalf dagen met 

blootstelling aan milde kou zonder te rillen, zagen we, in tegenstelling tot eerdere studies, 

geen effect op insuline gevoeligheid en geen effect op de glucose opname in skelet spieren. 

Omdat in het vorige onderzoek er nog ril-activiteit optrad, is er in deze studie specifiek gelet 

op de afwezigheid van rillen bij de proefpersonen. Dit laat zien dat langdurige koude 

blootstelling zonder te rillen niet leidt tot een verbeterde stofwisseling in volwassenen met 

obesitas. Mogelijk zou er een ander effect kunnen zijn op bijvoorbeeld de bloedvaten of de 

functie van het hart.   

 

In het volgende hoofdstuk, hoofdstuk 5, hebben we het acute effect van koude blootstelling 

en bruin vet activatie onderzocht in jonge gezonde proefpersonen. De verwachting was dat 

behalve het energiegebruik, er ook een toename in substraat (vetten en suikers) verbruik 

optreedt. Dit zou terug gezien kunnen worden in het verlagen van lipide levels, die typisch 

hoog zijn na een vetrijke  maaltijd. Daartoe werd een maaltijd test gebruikt, met twee 

maaltijden met een hoog vetgehalte om het postprandiale vet metabolisme te bestuderen. 

Ondanks een toename in vet oxidatie, was er geen reductie in lipiden levels tijdens de koude 

blootstelling. Dit betekent dat acute milde kou niet leidt tot verlaging van de lipide spiegels. 

Er werd ook geen effect van de koude blootstelling zonder het rillen de werking van de 

skeletspiervezels aangetoond. Tenslotte was er geen relatie met de activiteit en hoeveelheid 

van het bruin vetweefsel in deze proefpersonen. Lange termijn effecten op bijvoorbeeld 

artherosclerose dienen nog te worden bestudeerd. 

 

In Hoofdstuk 6, hebben de mogelijke rol van bruin vetweefsel bij de ziekte van Madelung 

onderzocht. Dit ziektebeeld wordt gekenmerkt door symmetrische vetstapeling. Een mogelijk 

pathofysiologisch mechanisme is dat dysfunctioneel bruin vet, door mutaties, 

verantwoordelijk is voor de vetstapeling. We hebben hierbij een patiënt met de ziekte van 

Madelung onderzocht. We hebben daarom vetbiopten genomen en de hoeveelheid bruin vet 

gemeten. We zagen op microscopisch en genetisch niveau geen verschil tussen het 

vetweefsel uit de lipomatose en het vetweefsel uit de buikwand. We zagen ook geen relatie 



 

  

met actief bruin vet in deze patiënt, en hebben dus geen verband gevonden tussen bruin vet 

en de ziekte van Madelung.  

In dit proefschrift is de potentie van milde koude blootstelling onderzocht, in zowel de acute 

blootstelling als na koude acclimatie. In de studies hebben we laten zien dat blootstelling aan 

koude zonder rillen niet leidt tot een verbetering in de stofwisseling. Er was geen verbetering 

van de insuline gevoeligheid na koude-acclimatisatie, en er was geen verlaging van lipide 

levels na acute milde kou. Het ontbreken van positieve effecten op de stofwisseling kan 

mogelijk worde terug geleid op het feit dat het om milde koude betrof. Hierbij is er een relatief 

kleine toename in energieverbruik, waardoor er ook te weinig substraat verbruik is om te 

kunnen leiden tot systemische effecten. Dit gebrek aan verbetering kan zijn veroorzaakt door 

de relatief kleine hoeveelheid bruin vet weefsel in volwassenen. Aangezien mensen 

beduidend veel meer spier weefsel hebben zou rillen bij meer extreme kou meer systemische 

effecten kunnen bewerkstelligen.  Dit zou kunnen betekenen dat geregeld rillen nodig is voor 

de ontwikkeling van een therapie ter behandeling of preventie van het metabool syndroom. 
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met de input voor data en hoe om te gaan met studenten(!).  Balen dat jij na een jaar eruit 

gestapt bent, maar je hebt je eigen weg gekozen. En naar mijn inzicht is dat een goede keuze 

geweest voor je carrière en geluk! 

 

Adam, na zware inspanning van jouw kant, kan ik je eindelijk in het Nederlands aanspreken! 

Bedankt voor alle hulp bij de metingen, van het slepen van materiaal (en proefpersonen), tot 

het invriezen van biopten (en proefpersonen), maar ook voor alle gezelligheid bij de metingen 

en op kantoor. Ook wil ik je bedanken dat je paranimf bent bij mijn promotie! Ik wens jou veel 

succes met je PhD!  

 

Pascal, eerst kwam je als student binnen en was je nog af en toe wat onzeker. Maar vanaf het 

moment dat je als onderzoeks-assistent terug kwam, ben je van onschatbare waarde geweest 

in het onderzoek. Of het nu ging om overnachtingen in de respiratiekamers of tijdens de 

urenlange maaltijdtesten, je bent er altijd bij geweest, en hebt ontzettend veel werk verzet. 

Enorm bedankt hiervoor, en ik wens je een prachtige carrière toe!  

 

Wei, thank you for all the fun with the English language! I’ll remember your English comments 

for a long time, and the list I kept will be there when you have your defence! You’re an 

amazing cook, and I’m curious where you carreer will take you! Good luck with your research 

and PhD! 

 

I would like to thank you and Pascal for being there as a colleagues in the office, and putting 

up with my swearing, jokes  and occasional singing! I wish you both all the luck with your 

carreer!  

 

Bas Havekes, jou wil ik enorm bedanken voor alle hulp als afhankelijk arts bij de studies en 

voor al je medische kennis bij het beoordelen van proefpersonen! 

 

Niels, jou wil ik bedanken voor alle hulp bij de biopten en voor het delen van het leed rondom 

de BAT metingen. Ik was blij dat ik het leed met iemand anders kon delen, want het mag een 

wonder heten dat we zoveel metingen gedaan kregen.  

 

Karin, jou wil ik bedanken dat ik van jou de techniek kon leren om mensen effectief koud te 

maken (lees, bruin vet activeren). Dankzij jou kon ik de BAT metingen uitvoeren en tot een 

succes maken! Ik wens jou en je gezin het allerbeste toe!  

 



 

  

Emmani, als medeauteur van mijn eerste publicaties wil ik jou enorm bedanken voor je 

kritische blik op alles wat ik ook maar neerpende, van manuscripten tot zelfs de cover letter 

voor de journals. Hierdoor zijn het publicaties geworden waar ik trots op ben! Hou me op de 

hoogte van je carrière! 

 

Ook de andere (oud)collega’s van het DMRG-team wil ik graag bedanken voor alle hulp en 

gezelligheid: Marlies, Yvonne, Yvo, Bas D., Kay, Vera S, Vera de W, Jakob, Ciaran, Charlotte, 

Nynke, Evelyn, Froukje, Sabine, Jan en Anne.  

Vaak hebben jullie meegeholpen met metingen/ overnachtingen of het overleven van de 

lange dagen. Of het nu was met goede koffie, advies of gezelligheid; jullie hebben mij 

ontzettend gesteund tijdens alle metingen! 

 

Daarnaast wil ik ook de UD’ers Sabine, Peter en Joris bedanken die vaak kritisch hebben 

meegekeken naar data en hoe dit uitgewerkt moest worden. Jullie hebben bijgedragen aan 

het begrijpen van de data en hoe dit moest worden geïnterpreteerd! 

 

Voor de technische support, wil ik graag Paul en Mark bedanken. Jullie hebben enorm veel 

gedaan om te helpen met de indirecte calorimetrie. Zeker als de data niet klopte, of als de 

EZcal weer raar deed, waren jullie daar om mee te helpen! 

 

Daarnaast mag ik ook zeker ons secretariaat niet vergeten, Desiree en Yolanda! 

Jullie hebben ontzettend veel betekend, of het nu ging om het plannen van meetingen met 

de professoren of om de koffie voorraad in de keuken aan te vullen! 

 

Natuurlijk waren alle BAT metingen ook nooit gelukt zonder alle hulp van de afdeling 

Nucleaire geneeskunde! Of het nu ging om de technische achtergrond, Roel, Matthias en Ivo, 

hiervoor kon ik bij jullie goed terecht. Ook met genoeg humor om mijn frustraties wat te 

verlichten. Voor alle hulp met de toevalsbevindingen kon ik bij Jan, Jochum, Christina, Tineke 

of Marinus terecht. Met name Marinus wil ik bedanken voor alle hulp met de speciale BAT 

meting bij de patiënt met de ziekte van Madelung, en ook veel dank aan Jan en Tineke voor 

het samen bekijken van de bruin vet scans in de studies.  Matthias wil speciaal bedanken voor 

het plaatsnemen in de corona bij mijn verdediging. 

 

Ook alle laboranten van nucleaire geneeskunde wil ik hierbij enorm bedanken: Laureen, 

Eefje, Mariëlle, Sandra, Roy, Christian, Christel, Kyra, Lino en Renée; zonder jullie was het 

nooit gelukt! Ook de medewerksters achter de balie zijn enorm belangrijk geweest voor de 

planning van alle BAT metingen, dus ik wil dan ook Lori, Martine, Cindy en Marie-Louise 

bedanken voor alle hulp hierbij.  

 



 

  

Uiteraard was de data ook nooit bij elkaar gekomen zonder de uitgebreide analyses van zowel 

bloed- en spiermonsters. Daarom wil ik ook Gert, Johanna, Esther K en Maud bedanken, voor 

hun enorme bijdrage aan dit werk.  

 

Verder wil ik alle proefpersonen bedanken, die hebben meegedaan met de uitgevoerde 

onderzoeken. Ik ben jullie zeer dankbaar voor het doorstaan van alle kou, spierbiopten en de 

vaak lange meetdagen. Zonder deze opoffering was deze thesis nooit tot stand gekomen! 

 

Verder special thanks aan Jules Wulms, voor het ontwerpen van de prachtige kaft! 

 

En ook zeker jou Carlijn, drs. Boon,  sinds ik jou heb leren kennen is mijn leven ontzettend 

ten goede veranderd! Ik hoop dat we samen de toekomst en het artsenleven ingaan! 

 

Ten slotte wil ik ook mijn familie en vrienden bedanken voor hun steun tijdens de soms zware 

tijden. Jullie steun heeft me vaak door de lastige maar ook zeker leuke momenten heen 

geholpen! 

 

Voor iedereen die ik hier niet expliciet heb vermeld: Enorm bedankt voor jullie bijdrage aan 

dit proefschrift en mijn PhD-traject! 
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