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Abstract In general, researchers attempt to quantify cognitive load using physiologic and

psychometric measures. Although the construct measured by both of these metrics is

thought to represent overall cognitive load, there is a paucity of studies that compares these

techniques to one another. The authors compared data obtained from one physiologic tool

(pupillometry) to one psychometric tool (Paas scale) to explore whether they actually

measured the construct of cognitive load as purported. Thirty-two participants with a range

of resuscitation medicine experience and expertise completed resuscitation-medicine based

multiple-choice-questions as well as arithmetic questions. Cognitive load, as measured by
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both tools, was found to be higher for the more difficult questions as well as for questions

that were answered incorrectly (p\ 0.001). The group with the least medical experience

had higher cognitive load than both the intermediate and experienced groups when

answering domain-specific questions (p = 0.023 and p = 0.003 respectively for the

physiologic tool; p = 0.006 and p\ 0.001 respectively for the psychometric tool). There

was a strong positive correlation (Spearman’s q = 0.827, p\ 0.001 for arithmetic ques-

tions; Spearman’s q = 0.606, p\ 0.001 for medical questions) between the two cognitive

load measurement tools. These findings support the validity argument that both physiologic

and psychometric metrics measure the construct of cognitive load.

Keywords Cognitive load � Expertise � Eye-tracking � Psychometrics � Pupillometry �
Resuscitation � Validity

Introduction

Physician cognitive load is an intrinsic characteristic of work in acute-care medical settings

and is known to affect performance (Perry et al. 2013). The nature of work in the emer-

gency department, where physicians are frequently interrupted, treat multiple patients

simultaneously and must regularly prioritize decision-making, places considerable

demands on their cognitive resources and thus increases the likelihood of making errors

(Laxmisan et al. 2007). To greater or lesser degrees, these observations hold true in many

domains of medicine where physicians must balance competing priorities while caring for

their patients.

From a theoretical perspective, cognitive load is thought to be comprised of three basic

elements: intrinsic cognitive load, extraneous cognitive load and germane cognitive load

(Young et al. 2014). Intrinsic cognitive load is a function of the complexity of the infor-

mation to be processed and the expertise of the task performer; while extraneous cognitive

load is due to suboptimal information presentation conditions. The sum of intrinsic and

extraneous cognitive load is thought to represent the overall cognitive load that can be

measured experimentally. Germane cognitive load is thought to refer to the working

memory resources dedicated to actively processing intrinsic cognitive load, and thus to

learning (Sweller 2010).

Cognitive load theory (CLT) is a theory of learning based on the optimal design of

instructional methods that considers a learner’s finite cognitive capacities to apply

knowledge and transfer it to new situations (Paas et al. 2003). According to CLT, mental

processing is limited by the capacity of working memory (De Jong 2010; Sweller et al.

1998). With the development of domain-specific expertise, those with more experience are

thought to be able to chunk related concepts together in elaborated schemas, thus maxi-

mizing the efficiency of their working memory (Gegenfurtner et al. 2011; Sweller et al.

1998). In addition to the efficiency afforded by schema creation, individuals are thought to

be able to extend domain-specific long-term working memory with experience in a given

field despite the traditional supposition that working memory itself is static (Ericsson and

Kintsch 1995). In medicine, this is accomplished through the development of retrieval cues

between working memory and long-term memory that accelerate memory encoding and

decoding. Richer mental models are created which allow experienced clinicians to more

readily recognize when a new clinical scenario may fit with a previously identified pattern
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(Gegenfurtner and Seppänen 2013). These same skills allow clinicians to efficiently rec-

ognize when a new clinical scenario might not fit a previously identified mental model,

thus altering subsequent management decisions (Schubert et al. 2013). Deliberately

practicing these cognitive strategies (as well as others) in the context of years of experience

allows certain individuals to develop expertise in a domain (Ericsson et al. 2007; Norman

2005). As a result, a particular task may yield high intrinsic cognitive load for a novice task

performer but a much lower intrinsic load for an expert task performer.

For decades, researchers have been interested in measuring cognitive load because it

impacts the understanding of expertise development as well as education. It has been

shown that measures of cognitive load can reveal important information about CLT beyond

traditional performance metrics (Paas et al. 2003). The science of cognitive load quan-

tification has been traditionally separated into physiologic measurements and psychometric

measurements of this construct (Paas et al. 2003). Dual-task performance techniques

(which are based on the premise that limited cognitive resources exist that must be dis-

tributed between two competing tasks) have gained some popularity in the literature as a

means to quantify cognitive load as well (Brunken et al. 2003).

A well-studied method for physiologic measurement of cognitive load is pupillometry.

Pupillometry consists of recording a participant’s changes in pupil diameter as he/she

utilizes cognitive resources for working memory processes. Pupil diameter increases as

cognitive load increases as a result of central autonomic nervous system activity. As such,

pupillometry is thought to provide an estimate of the intensity of a participant’s cognitive

load at a given instant in time (Laeng et al. 2012). Numerous studies in various fields have

also found pupillometry to be useful to measure cognitive load (Beatty 1982; Hess 1965;

Hess and Polt 1964; Kahneman and Beatty 1966; Klingner et al. 2008, 2011; Paas et al.

2003; Szulewski et al. 2014).

With respect to resuscitation medicine content and resuscitation medicine expertise,

measuring changes in pupil size as a surrogate marker for cognitive load has shown that

experienced physicians expend less cognitive load when answering domain-specific mul-

tiple choice questions than novices (Szulewski et al. 2015). It is postulated that experts’

lower level of cognitive load in a testing environment is related, in part, to their expertise in

authentic clinical situations (like work in an emergency department) and their expanded

long-term working memory.

In addition to physiologic measures of cognitive load, psychometric scales that measure

subjective cognitive load are widely used in the literature. One such example is the nine-

point mental effort scale developed by Paas (1992). This scale has been widely used in the

literature and has been shown to be a reliable and valid measure of overall cognitive load

(Ayres 2006; Paas et al. 2003). A copy of this scale is included in ‘‘Appendix 1’’.

Though both physiologic and psychometric measures attempt to quantify cognitive load,

there is no accepted gold-standard for cognitive load measurement. Some authors have

questioned whether data derived from psychometric surveys might actually give infor-

mation about intrinsic cognitive load, as opposed to overall cognitive load, as has been

traditionally assumed (Naismith et al. 2015). Others have brought into question whether

construct validity truly exists and if another variable, like stress, may actually be the one

being measured using these techniques. A recent systematic review on cognitive load

measures concluded that the quality of evidence for cognitive load measurement is low and

that multiple quantification techniques should be used together in future studies to address

this issue (Naismith and Cavalcanti 2015). In short, consensus about the validity of these

measures does not fully exist. Moreover, there is a paucity of studies that compares

physiologic and psychometric tools head-to-head. Without more evidence, it would be
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premature to conclude that they are reliably measuring the same construct and that this

construct is, in fact, cognitive load. This study attempts to bridge this gap, by providing

evidence of validity using aspects of Cook’s review of the Messick validity framework as a

guide (Cook and Beckman 2006). This framework suggests that evidence to support

validity of an instrument should be based on information from five sources (content,

response process, internal structure, relations to other variables and consequences).

The objective of this experiment was to investigate the relationship of measured cog-

nitive load as determined by (1) an analysis of changing pupil size and (2) responses to a

subjective psychometric mental effort questionnaire. These experiments were carried out in

participants with varying levels of resuscitation medicine experience as they performed a

resuscitation medicine test.

Methods

Experimental setting

Participant cognitive load was measured by both physiologic and psychometric measures

as participants with varying levels of resuscitation medicine experience answered a mul-

tiple-choice question (MCQ) test presented to them on a computer monitor. A research

assistant who was not involved in data analysis or experimental design conducted the

experiment with each participant.

Participants

A convenience sample of 32 participants was recruited between September and November

of 2014. Participants were grouped according to their experience in resuscitation medicine.

The novice group comprised 13 undergraduate medical students in their first two years of

medical school. The intermediate group consisted of 9 senior residents (fourth or fifth year

residents enrolled in emergency medicine and other resuscitation-based fields) as well as

emergency medicine attending physicians in their first years of practice. The experienced

group of participants included 10 attending physicians with more than ten years of clinical

experience in fields related to emergency and resuscitation medicine.

The mean age of the 32 participants was 34.1 (SD = 10.8) years. The mean experience

level, defined as number of years since starting medical school for all participants, was

10.1 (SD = 10.2). Participant mean age was 24.3 (SD = 1.8), 33.1 (SD = 2.6), and 47.7

(SD = 7.2) years for the novice, intermediate and experienced groups, respectively.

Female participants made up 6 of the 13 novice subjects, 1 of 9 intermediate participants

and 2 of 10 experienced participants. It had been a mean of 0.8 (SD = 0.4), 9.3

(SD = 2.1), and 22.9 (SD = 7.2) years since the start of medical school for the novice,

intermediate and experienced groups respectively.

The rationale for this division of participants was to provide evidence of ‘‘relations with

other variables’’ for the validity argument of the testing instruments used. Relations with

other variables evidence is thought to bolster the validity argument when the results from

subgroups based on training status vary as expected. The authors hypothesized that the

novice group would have a relatively low content-knowledge, but a high test-taking ability

as a result of their temporal proximity to similar MCQ testing. The intermediate group was

expected to have both a high content-knowledge as well as test-taking ability. In contrast,
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the experienced group was hypothesized to have a high content-knowledge but a relatively

lower test-taking ability because of the increased time elapsed from their own written

MCQ examinations.

Thirty-five participants were contacted by email by one of the authors to take part in

the study; they did not receive an incentive to participate. Eligibility was determined

based upon known training/experience level. One potential participant from the inter-

mediate group and two potential participants from the experienced group declined to

participate. All novices approached agreed to participate. The Research Ethics Board at

Queen’s University provided approval for this study (SMED–115-13; extension of file

#6010680).

Tools used

Prior to each individual session, participants were fitted with the Tobii� Glasses Eye

Tracker (Tobii Technologies, Danderyd, Sweden) and the device was calibrated as per

manufacturer recommendations. During this calibration, each participant’s pupil size at

baseline was determined. The equipment subsequently calculated the dynamic monocular

pupil size as a percentage of baseline at a rate of 30 Hz throughout the experimental

session.

After answering each question, participants were prompted to rate their mental effort

using the psychometric mental effort questionnaire developed by Paas (1992). See

‘‘Appendix 1’’ for details. Participants verbalized their responses to the questions and

surveys; these audio data were recorded synchronously and analyzed later by a research

assistant blinded to the pupillometry data.

These two tools were utilized in the current experiment in an effort to provide validity

evidence based on ‘‘relations to other variables’’. This source of evidence for validity is

based on the idea that if the tools are measuring the same construct, then there should be a

correlation between their scores (Cook and Beckman 2006).

Furthermore, the Paas scale was used in an effort to see whether the pupillometry data

was measuring what it was purported to measure based on the thought process of the

participants. If the actions (pupillometry data in this case) fit with the thought process of

participants, this would provide evidence validity based on ‘‘response process’’ (Cook and

Beckman 2006). Because the Paas scale asks participants to rate their level of investment

of cognitive resources and pupillometry is supposed to quantify the investment of cognitive

resources, it was theorized that a correlation between the two tools would provide some of

this ‘‘response process’’ evidence.

Instrument validity and reliability

Using various measuring devices, researchers have been using pupillary measurements as a

surrogate marker for cognitive load and have validated its use in numerous experimental

realms. Beatty (1982) found that digit and linguistic tasks of increasing complexity caused

pupillary size to increase to greater degrees. In an early experiment, Hess (1965) showed

that pupil size increased when arithmetic problems were presented to participants, peaked

when the answer was given and then dropped off again. Further, higher peak pupil dilation

has been shown to be associated with increasing task difficulty (Klingner et al. 2011).

Szulewski et al. (2014) were able to replicate these findings using arithmetic questions with

newer mobile eye-tracking technology. This new technology has also been successfully
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utilized in cognitive load measurement experiments in medical testing where questions

posed to participants were shown to affect pupil size in predictable ways based on question

and participant characteristics (Szulewski et al. 2015). Other groups of researchers have

also found consistent results using the mental effort scale developed by Paas found in

‘‘Appendix 1’’ (Ayres 2006; Tuovinen and Paas 2004). For example, in a group of high

school students solving algebra problems, Ayres (2006) showed that the Paas scale pro-

vided a cognitive load rating that was reliable and correlated highly with errors, as

expected.

Experimental design

After calibration of the eye-tracking device, each participant sat at a distance of 1 m

from a computer monitor on which questions were displayed. Ambient light and screen

brightness were standardized and participants were asked to continue looking at the

screen throughout the experiment and to verbalize their responses to the questions.

Each participant encountered the same questions in the same order. Four arithmetic

questions were interspersed among twelve resuscitation-based medical MCQ’s. Questions

were classified a priori into ‘‘difficult’’ and ‘‘easy’’ questions based on their origin (medical

student handbook vs. specialty board examination preparation material) as well as the

authors’ judgement in an effort to provide evidence from a ‘‘relations to other variables’’

source. A black circle was presented on the monitor between questions to re-establish a

pre-question pupil diameter baseline for each question and each participant.

After each question, participants were prompted to rate their mental effort using the

mental effort scale in ‘‘Appendix 1’’ (Paas scale).

Data analysis

In general, when a participant reads a question or is presented with a problem to solve, his/

her pupil diameter increases steadily until he/she provides an answer, at which point the

pupil diameter decreases again (Kahneman and Beatty 1966). Previous studies utilizing

pupillometry as a physiologic measure of cognitive load have concluded that measuring

cognitive load accurately requires an analysis of both the magnitude of the change in pupil

size as well as the duration of time between question presentation and verbalization of a

response (i.e. the time that a participant is thinking about an answer) (Szulewski et al.

2015).

To combine these two parameters into one measure we calculated the area under the

curve (above baseline) of the change in pupil size (expressed as a percentage of baseline

pupil diameter at time of calibration) versus time from question start to verbalization of

an answer [this is referred to as pupillary change index (PCI) throughout this manuscript

and expressed in units of % seconds]. The size of this value was hypothesized to

represent the participant’s overall cognitive load for a given question. The determination

of this value was accomplished by manual graphical analysis of the raw data to obtain a

quantitative measure for each participant and each question. In order to account for

possible baseline drift or residual cognitive load from a previous question, the baseline

value for pupil size was recalibrated for each question by averaging the raw data just

before each question was presented (corresponding to the time that each participant was

focusing on a black circle presented between each question). See ‘‘Appendix 2’’ for a

visual representation of one example of the raw pupillometric data. The manual deter-

mination of the PCI was labour-intensive (about 15 min for each PCI); accordingly, we
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decided to focus this analysis on the first half of both the arithmetic and medical

questions for all participants.

Peak pupil size was determined for all questions and all participants. To aid in this

analysis, a procedure in Visual Basic was implemented to clean and analyze the pupil-

lometry data (available from the authors on request). To reduce artefactual (e.g. blinking)

and missing data, the 30 Hz raw data was smoothed by replacing values that were blank or

deviated by more than 10 % absolute from the previous value with the rolling average of

the previous 1/6 of a second.

The psychometric survey responses and the physiologic pupil data were then compared

by question type, level of participant experience, correctness and level of question

difficulty.

Correlational analyses were performed using parametric statistics (Pearson correlation)

as well as non-parametric statistics (Spearman’s q) as not all data were normally dis-

tributed. Other analyses were made by Pearson Chi square, student’s t test (non-para-

metric Mann–Whitney U), ANOVA (non-parametric Kruskal–Wallis), and post hoc

Tukey analysis. IBM SPSS Statistics 21 was used for all analyses. Correlation effect

sizes were designated a priori as weak (0.10–0.29), moderate (0.30–0.49) and strong

(‡0.50) (Cohen 1988). Differences were considered to be significant at a level of

p\ 0.05.

Results

Correlation between PCI and Paas scale

Overall, the PCI (a physiologic measure of cognitive load) correlated well with the Paas

scale (a psychometric measure of cognitive load).

For the arithmetic questions, parametric analysis revealed a Pearson’s correlation

coefficient of 0.675 (p\ 0.001), which indicates a strong positive relationship. For the

medical questions, parametric analysis revealed a Pearson’s correlation coefficient of 0.542

(p\ 0.001), which also indicates a strong positive relationship. Non-parametric correla-

tional analyses were also performed in order to confirm these values [Spearman’s q for

arithmetic questions was 0.827 (p\ 0.001); Spearman’s q for medical questions was 0.606

(p\ 0.001)]. See Fig. 1 for a scatterplot of PCI values plotted against Paas scale result

values. These strong correlations persisted when analyzed by participant level of experi-

ence (Table 1).

Performance based on training subgroup

Table 2 provides a summary of performance by experimental group as well as question

type. There was no significant difference in performance on the arithmetic questions

between the novice group and the intermediate group, the novice group and the expert

group and the intermediate group and the expert group (p = 0.858, p = 0.410, and

p = 0.555 respectively). For the medical questions, the novice group performed signifi-

cantly worse than both the experienced and intermediate groups (p\ 0.001). Though both

the intermediate and experienced groups were fairly accurate, the intermediate group

significantly outperformed the experienced group (p = 0.044).
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Fig. 1 Graphical representation of the correlation between pupillary change index (in % seconds) plotted
against Paas scale response for all participants (novice, intermediate and experienced) (r = Pearson’s r;
q = Spearman’s q)

Table 1 Parametric (Pearson’s r) and non-parametric (Spearman’s q) correlation coefficients of pupillary
change index versus Paas scale response for the arithmetic and medical questions, broken down by sub-
group

Arithmetic questions Medical questions

Pearson’s r Spearman’s q Pearson’s r Spearman’s q

Novice 0.644 (p = 0.003) 0.716 (p = 0.001) 0.422 (p = 0.001) 0.501 (p\ 0.001)

Intermediate 0.807 (p\ 0.001) 0.834 (p\ 0.001) 0.561 (p\ 0.001) 0.607 (p\ 0.001)

Experienced 0.636 (p = 0.003) 0.851 (p\ 0.001) 0.639 (p\ 0.001) 0.611 (p\ 0.001)

Overall 0.675 (p\ 0.001) 0.827 (p\ 0.001) 0.542 (p\ 0.001) 0.606 (p\ 0.001)

Table 2 Mean (95 % confidence interval) proportion of questions answered correctly by subgroup

Arithmetic questions (%) Medical questions (%)

Novice 73 (59–93) 32 (25–40

Intermediate 74 (58–86 89 (82–94

Experienced 80 (65–90 79 (71–85
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Additional evidence for PCI

Variation across training subgroup and question type

Arithmetic questions The PCI values of the novice group were higher than the PCI values

of the experienced group when answering arithmetic questions (p = 0.005). There was no

significant difference between the intermediate and experienced groups (p = 0.443). In

addition, there was no significant difference between the intermediate group and the novice

group (p = 0.128).

Medical questions The PCI values of novices were significantly higher than of experi-

enced participants for the medical questions (p = 0.003). This same pattern was observed

when comparing the PCI results of novices to intermediate participants (p = 0.023). There

was no significant difference when the PCI values of intermediate participants were

compared to experienced participants (p = 0.851).

Variation across item difficulty, correctness and question type

Overall, difficult questions were associated with a substantially higher mean PCI than easy

questions (123.40 vs. 45.14; p\ 0.001). Similarly, incorrectly answered questions were

associated with a higher PCI compared to correctly answered questions (152.51 vs. 66.04;

p\ 0.001). There was no significant difference in PCI when the arithmetic questions were

compared to the medical questions (101.52 vs. 89.69; p = 0.42). See Table 3 for details.

Internal structure evidence

Of 232 possible data points, 10 were missing in the PCI data set because of poor pupillary

size output quality in the raw data. Values were not normally distributed and were skewed

toward smaller PCIs. There were a limited number of outliers, all on the high PCI side. See

‘‘Appendix 3’’ for additional details.

Table 3 Effect of question difficulty, correctness and type on mean pupillary change index and mean Paas
score for all subgroups

PCI mean (SD) in
% seconds

Paas score
mean (SD)

Difficult questions 123.40 (108.26) 5.40 (1.80)

Easy questions 45.14 (37.52) 3.62 (1.62)

Easy versus difficult p\ 0.001 p\ 0.001

Correct responses 66.04 (69.46) 4.22 (1.80)

Incorrect responses 152.51 (117.82) 5.89 (1.74)

Correct versus incorrect p\ 0.001 p\ 0.001

Arithmetic questions 101.52 (111.22) 4.89 (2.32)

Medical questions 89.69 (89.61) 4.66 (1.80)

Arithmetic versus medical p = 0.42 p = 0.43

PCI pupillary change index, SD standard deviation
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Additional evidence for Paas scale

Variation across training subgroup and question type

Arithmetic questions Similar to the PCI findings, the Paas scale results for novices were

higher than for experienced participants when answering arithmetic questions (p = 0.040).

There was also no significant difference between the intermediate and experienced groups

(p = 0.549). In addition, there was no significant difference between the intermediate

group and the novice group (p = 0.365).

Medical questions In keeping with the PCI results, the Paas scale values of novices were

significantly higher than the Paas scale values of experienced participants for the medical

questions (p\ 0.001). This same pattern was observed when comparing the Paas scale results

of novices to intermediate participants (p = 0.006). There was no significant difference when

the Paas scale values of intermediate participants were compared to experienced participants

(p = 0.279).

Variation across item difficulty, correctness and question type

In keeping with the PCI results, difficult questions were associated with a higher Paas scale

rating than easy questions (5.40 vs. 3.62; p\ 0.001). Similarly, incorrectly answered

questions were associated with a higher Paas scale rating than correctly answered questions

(5.89 vs. 4.22; p\ 0.001). There was no significant difference in Paas scale rating when

the arithmetic questions were compared to the medical questions (4.89 vs. 4.66; p = 0.43).

See Table 3 for details.

Internal structure evidence

All 232 possible data points for the Paas scale were collected, with no missing values. The

data were normally distributed, with no outliers. See ‘‘Appendix 3’’ for additional details.

Peak pupil size analysis

Analysis of peak pupil size data for the arithmetic questions revealed no significant dif-

ferences between any of the subgroups (novice and intermediate p = 0.15; novice and

experienced p = 0.08; intermediate and experienced p = 0.97).

Analysis of peak pupil size for the medical questions revealed a significant difference in

peak pupil size between the novice group and the experienced group (p = 0.002). There

was no significant difference between peak pupil size in the novice and intermediate

groups (p = 0.38) or the intermediate and experienced groups (p = 0.10). See Table 4 for

descriptive statistics.

Discussion

In this study, we compared two methods of cognitive load quantification—a physiologic

measure (pupillometry with time to response) and a psychometric measure (Paas scale). In

addition, we examined the relationship between cognitive load measures and experience
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levels of the participants. The goal was to add to the body of literature that supports the

validity of using these techniques to measure cognitive load, using Cook’s review of the

Messick framework as a guide.

A direct comparison of the PCI and Paas scale values revealed a strong positive

correlation. Further analysis revealed that this correlation was consistent within sub-

groups of experience level. This suggests that both the PCI and the Paas scale measured

the same construct to some degree. Given previous work in this field as well as the

confirmatory results from this experiment, it is likely that this construct is indeed overall

cognitive load, which is thought to represent the sum of intrinsic and extraneous cog-

nitive load (Sweller 2010). We suggest that the correlation found between the two

instruments studied provides evidence for validity with respect to Cook’s description of

‘‘relations to other variables’’ as both variables are commonly used in the literature to

quantify cognitive load.

We also found that difficult arithmetic and difficult medical questions resulted in

increased cognitive load compared to easier questions, both when analyzed using the PCI

as well as the Paas questionnaire. Using both pupillometry and psychometric analysis,

we found that incorrectly answered questions caused participants to experience more

cognitive load than questions they answered correctly. Finally, no difference was found

when questions were divided into arithmetic and medical subgroups. Pupillometry and

psychometric results followed the same patterns for all of these analyses. These findings

are reassuring as they are in keeping with results from previous studies that show similar

trends (Szulewski et al. 2015). In sum, difficult and incorrectly answered questions

caused participants to experience greater cognitive load, regardless of question type.

These results are expected and bolster the validity argument from a ‘‘relations to other

variables’’ source.

The PCI and Paas scale data for the arithmetic questions showed that novices experi-

enced higher cognitive load compared to experts when answering questions despite no

significant difference in performance between the groups. Of note, there was no significant

difference between the peak pupil size between the groups when answering the arithmetic

questions. The lack of significant difference in performance on the arithmetic questions

makes sense as participants were divided into groups based on resuscitation medicine

experience, not arithmetic experience. The lower cognitive load experienced by the

experienced group compared to the novice group for the arithmetic questions may be

related to age. It is possible that these older participants were either better at arithmetic or

Table 4 Pupillary change index, Paas score and peak pupillary size by subgroup and question type

PCI mean (SD) in %
seconds

Paas score mean
(SD)

Peak pupillary size mean
in % (SD)

Novice (arithmetic) 160.70 (152.10) 5.84 (2.31) 112.55 (SD = 14.03)

Intermediate (arithmetic) 93.60 (80.02) 4.82 (2.13) 106.66 (SD = 16.56)

Experienced (arithmetic) 52.44 (52.09) 4.05 (2.24) 105.91 (SD = 8.09)

Novice (medical) 121.39 (113.32) 5.46 (1.75) 101.76 (10.89)

Intermediate (medical) 76.88 (67.60) 4.47 (1.83) 100.05 (6.69)

Experienced (medical) 67.73 (67.93) 3.98 (1.50) 97.33 (10.46)

PCI pupillary change index, SD standard deviation
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that physiologic changes of ageing were responsible for a less responsive pupil. The lack of

difference in the peak pupil size analysis for the arithmetic questions makes this latter point

less likely. Importantly, both PCI and Paas scale data were consistent with one another

when considering the arithmetic questions.

An analysis of the PCI and Paas scale data for the medical questions suggested that

novices had higher cognitive load than both the intermediate and experienced groups.

Further, no significant difference was found in cognitive load of the intermediate group

compared to the expert group for these medical questions. Analogous to these trends,

novices performed significantly worse than both the experienced and intermediate groups.

Conceptually, these findings may be explained by the fact that novices have relative

inexperience with resuscitation medicine content material, leading them both to perform

more poorly and to experience higher cognitive load when attempting to find solutions to

problems. The lack of difference in cognitive load of medical questions on physicians in

the intermediate versus the experienced group is not surprising given that both these groups

are well versed in the content material comprised in the experimental test. The intermediate

group’s significantly increased score over the experienced group is likely related to this

group’s relative proximity to their specialty examinations. Finally, the medical question

analysis revealed that novices experienced a significantly increased peak pupil size com-

pared to the experienced group. This difference was not present when answering arithmetic

questions.

Together, these observations emphasize that cognitive load measurement by both

physiologic and psychometric tools acts in a way that is expected and explainable across

groups of physicians with varying levels of experience as well as between question types

(domain-specific medical questions vs. arithmetic questions). These patterns provide some

evidence of what Cook would call validity from a ‘‘relations to other variables’’ source.

That is, the observed patterns in the data varied across groups of participants with different

training status as well as with question type, as expected.

The data distribution presented in ‘‘Appendix 3’’ provides some validity evidence

from an internal structure source. The analysis captured all Paas responses and missed

less than 5 % of PCI values (due to poor data quality). No outliers were identified in the

Paas responses and a relatively small number of outliers were identified in the PCI

analysis.

Finally, this study provides some indirect evidence of response process as a source of

validity. Response process, as a source of validity, exists when the actions and thought

processes of participants align with the intended measured construct. In this study, though

participants were not asked to specifically describe their thought processes (as may have

been done with a think-aloud protocol), the Paas survey asked participants to rate

investment of cognitive resources, which is what the pupillometry metrics were designed to

measure.

Although this paper provides some evidence to support that both physiologic and

psychometric measures of cognitive load quantify cognitive load as a construct to some

degree, each has its own strengths and limitations. Psychometric scales are easy to use and

cheap to implement, whereas pupillometry is expensive and not practical for routine use in

the real world (although this will likely change as the cost of the technology decreases). On

the other hand, psychometric scales are prone to participant manipulation and only provide

a single cognitive load measurement. Conversely, pupillometry has the advantage of being

objective, difficult to manipulate and provides real-time data throughout the peaks and

troughs of cognitive effort during the completion of a task.
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Importantly, we found the pupillometric data analysis to be time-consuming and

difficult to automate with programmed code in this experiment as a result of changing

baseline pupil sizes between questions. Changes to the experimental design by mini-

mizing interruptions and more consistently defining pupil baseline (possibly with a

standardized cognitive task), may facilitate data extraction in the future. Until this is

further addressed, it would be a reasonable choice to use the Paas questionnaire as a

means to determine cognitive load in a test-taking setting, especially if a general

understanding (as opposed to a real-time and detailed) assessment is sought. The peak

pupil size variable, which is much easier to extract, is another available option if a

physiologic variable is desired. Ultimately, a real-time physiologic measure obtained

unobtrusively, like pupillometry, has powerful implications for the delivery and assess-

ment of learning within CLT.

Our study has certain limitations. To begin, we were unable to control for participant

age between groups. This is unavoidable given the inherent nature of experience, but it

does raise questions about the possible confounding effects of age on both pupillometry

analysis as well as questionnaire responses. Although we recognize that there might be an

effect, we believe it to be small given that pupillary size and psychometric responses varied

in the same direction throughout this study. Further, the fact that there was no statistical

difference in peak pupil size in the arithmetic questions between groups (but there was for

the medical questions) raises doubts that the PCI findings are solely caused by physio-

logical pupillary changes related to ageing.

Secondly, we used known-groups comparisons in part of our analysis of validity from

a ‘‘relations to other variables’’ source. Though necessary, this type of comparison (on its

own) is known to be non-specific and inconclusive because of possible confounding

effects (Cook 2015). The analysis of training-relevant (medical) and training-irrelevant

(arithmetic) questions strengthens this argument, but the possibility of confounding

remains.

In addition, we did not distinguish between the types of cognitive load (intrinsic vs.

extraneous vs. germane) and instead chose to focus on total measurable cognitive load.

Although this strategy was necessary in order to investigate the research question, a deeper

analysis using an instrument designed to differentiate types of cognitive load like the one

proposed by Leppink et al. (2014) may have been beneficial—especially given findings in

recent literature that have brought into question whether psychometric data may actually be

measuring intrinsic, as opposed to total, cognitive load in certain settings (Naismith et al.

2015).

The fact that two potential participants from the experienced group and one potential

participant from the intermediate group declined to participate in the study could lead to

selection bias. In addition, the low proportion of female participants in this study has the

potential to skew the results; however, we do not know of any literature that supports a

difference in pupillary responses based on sex.

Finally, although we found a strong positive relationship between our two measures

and thus were able to conclude that both sets of data are likely measuring the same

construct to a large degree, we cannot absolutely confirm that this construct is indeed

overall cognitive load, as opposed to another, related concept. Despite this, we feel that

our data triangulates the available evidence and strengthens the argument that overall

cognitive load is, in large part, the construct that is being measured by these techniques.

From the perspective of Cook’s review of Messick’s framework of validity, although we

provide some evidence of internal structure, response process and relations to other
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variables, this study does not address content and consequences as sources for validity

evidence.

Our work focused on cognitive load measurement in a tightly controlled (not true-to-

clinical-life) MCQ environment. Future studies that measure cognitive load in real (or

at least simulated) medical emergencies could provide more accurate insights into

medical decision-making and in situ cognitive load. In addition, pupillometry has the

potential to complement research in visual expertise (Gegenfurtner et al. in press). It is

well recognized that novices and experts have different visual gaze patterns in a variety

of professional domains (Gegenfurtner et al. 2011, 2013; Gegenfurtner and Szulewski

2016; Kok et al. 2012). Measuring cognitive load via pupillometry while analyzing

participants’ visual patterns as they perform selected tasks could provide further

insights into the cognitive process and how it changes with expertise. This type of

experiment would be fairly easy to perform as the eye-tracking tool used in this study

can track gaze behaviours and record pupillometry data simultaneously.

The currently accepted understanding of validity places an emphasis on construct

validity as the ‘‘whole’’ of the validity argument (Downing 2003). Based on the results of

this study, we have been able to provide further evidence of construct validity that the PCI

and the psychometric Paas scale are indeed reasonable surrogate markers of cognitive load.

Researchers and educators can have increased confidence using either measure depending

on the context and the purpose of their study, as they both appear to measure the same

construct.

Conclusion

Comparing the measurement of a construct thought to represent cognitive load on

medical professionals (both with a pupillometry-based physiologic tool as well as a

psychometric survey) reveals a strong positive correlation between the two techniques as

well as expected patterns based on question type, difficulty, correctness of answers and

training status. This provides evidence that the construct being measured in both cases is

related. Overall, the results support the validity of using data obtained using either

technique as a surrogate for cognitive load. Further study into the subtypes of cognitive

load in medical testing environments as well as cognitive load measurement in real-life

clinical scenarios has the potential to provide new insights into the clinical decision-

making process.
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Appendix 1

Psychometric survey used in the study, adapted from Paas (1992).
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Please choose the category (1, 2, 3, 4, 5, 6, 7, 8, or 9) that applies to you: 

In the exercise that just finished, I invested:

1. very, very low mental effort 

2. very low mental effort 

3. low mental effort 

4. rather low mental effort

5. neither low nor high mental effort 

6. rather high mental effort

7. high mental effort

8. very high mental effort

9. very, very high mental effort

Appendix 2

Example of raw pupillometry data obtained from one experienced participant for one

medical question. The first arrow represents the time the question appeared on the screen.

The second arrow represents the point at which the participant verbalized his answer. As

the participant experiences increasing cognitive load during the thought process, the pupil

diameter increases in size. When the participant verbalizes the answer to the question,

pupil size decreases again. The quantitative cognitive load measurement used in the

pupillometry arm of this study can be conceptualized as the area under the curve between

these two arrows (referred to as pupillary change index in this manuscript).
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Appendix 3

Data distribution for Paas and Pupillary Change Index scales:

Paas PCI

Valid data points 232 222

Missing data points 0 10

Minimum value 1 2.9

Maximum value 9 597.2

Mean 4.7 92.7

Standard deviation 1.9 95.5

25th percentile 3 27.7

Median 5 59.4

75th percentile 6 124.2
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Boxplots of the data distribution of the Paas and Pupillary Change Index scales showing

outliers:
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