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Summary

This magnetic resonance
(MR)-based, vendor-inde-
pendent intensity based his-
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Purpose: The objective of this study is finding an intensity based histogram (IBH)
signature to predict pathologic complete response (pCR) probability using only
pre-treatment magnetic resonance (MR) and validate it externally in order to create
a workflow for the external validation of an MR IBH signature and to apply the model
out of the environment where it has been tuned. The impact of pCR and the final
predictors on the survival outcome were also evaluated.
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predict pathologic complete

response (pCR) probability
in locally advanced rectal
cancer patients using only
pre-treatment imaging. The
use of the radiomic features,
combined with the clinical
information, can add infor-
mation in predicting pCR.
Furthermore, it is an exter-
nally validated model with 2
data sets coming from 2
different institutions.
Methods and Materials: Three centers using different MR scanners were involved in
this retrospective study. The first center recruited 162 patients for model training, and
the second and third centers provided 34 plus 25 patients for external validation.
Patients provided written consent. Accrual period was from May 2008 to December
2014. After surgery pathologic response was defined. T2-weighted MR scans acquired
before chemoradiation therapy (CRT) were used for analysis addressed on primary
lesions. Images were pre-processed using Laplacian of Gaussian (LoG) filter with
multiple s, and first order intensity histogram-based features (kurtosis, skewness,
and entropy) were extracted. Features selection was performed using Mann-Whitney
test. Tumor staging (cT, cN) was added to build a logistic regression model and predict
pCR. Model performance was evaluated with internal and external validation using
area under the curve (AUC) of the receiver operator characteristic (ROC) and
calibration with Hosmer-Lemeshow test. The linear cross-correlation matrix
(Pearson’s coefficient) and the variance inflation factor (VIF) were used to check
the correlation and the co-linearity among the final predictors. The amount of the
information added through the radiomics features was estimated by using the
DeLong’s test, and the impact of pCR and the final predictors on survival outcomes
were evaluated through the Kaplan-Meier curves by using the log-rank test and the
multivariate Cox model.
Results: Candidate-to-analysis features were skewness (sZ 0.485, P valueZ .01) and
entropy (s Z 0.344, P value < .05). Logistic regression analysis showed as significant
covariates cT (P value < .01), skewness-s Z 0.485 (P value Z .01), and entropy-
s Z 0.344 (P value < .05). Model AUCs were 0.73 (internal) and 0.75 (external).
Conclusions: This MR-based, vendor-independent model can be helpful for predicting
pCR probability in locally advanced rectal cancer (LARC) patients only using
pre-treatment imaging. � 2018 Elsevier Inc. All rights reserved.
Introduction

The staging process in oncology is based on radiological
images analysis and reporting. The TNM staging process
itself is widely based on radiological definition of
boundaries of primary lesion, lymph-nodal, and distant
metastases. Nowadays radiological images can represent
a source of data that can be analyzed by using
automated computer-based techniques, working on
numerical informations coded within the Digital Imaging
and Communications in Medicine (DICOM) files (1): this
images numerical analysis has been named “radiomics” (2).
It uses a high number of numerical features that can be
extracted automatically by images and analyzed for
decoding the tumor “phenotype” as a set of significant
numerical values. An accurate process of feature selection
always underlies the final radiomics model extraction. In
the radiomics workflow the use of computed tomography
(CT) images has shown a meaningful correlation with
clinical outcome in many anatomic sites, such as lung
tumors (2, 3). Considering the locally advanced rectal
cancer (LARC), first reports showed the possibility to
achieve similar findings using the CT scan in mixed
population patients (rectum and colon) (4) and MR (5, 6),
but neither an external validation (for the CT) nor a wide
number of patients (for the MR) were provided to
strengthen the value of the radiomics features. Magnetic
resonance imaging (MRI) has good accuracy for
both circumferential resection margin involvement and
T category definition and should be considered for
preoperative rectal cancer staging (7) as a routine procedure
beside CT scan. MR has proven to be effective for LARC
staging and prognosis evaluation in several publications
(8-10). Another important aspect in LARC treatment is the
use of preoperative CRT, nowadays considered the standard
for reducing the probability to address patients to
abdominal-perineal resection and for increasing local
control (11, 12). The pCR after CRT has been shown to be
significant for predicting sphincter preservation and
survival outcomes (13, 14), and its correlation with MR
imaging findings has been already proven (10). Starting
from this background, this work primarily intended to
define an MR IBH signature able to distinguish patients that
will show, or not, a pCR after CRT for LARC cases. The
main goal of this work was trying to create an IBH
signature-based predictive model, able to classify patients
before starting the CRT treatment, adding prediction to the
traditional clinical information and supporting the
possibility, in the future, to prescribe treatments that could
be really tailored to tumor phenotype as coded by the
radiomics purpose. A secondary objective was creating a
workflow for the external validation of an MR IBH
signature in order to apply the model out of the
environment where it has been tuned. Another important
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issue in radiomics is the reproducibility of the signature.
This fact led us in trying to use only first order statistical
features that are a statistical evaluation of intensity
histograms, choosing features that are not influenced by
inter-patients variability of the signals when average shift
about intensity values is linear (see Appendix E1; available
online at https://doi.org/10.1016/j.ijrobp.2018.04.065).

Methods and Materials

Patients selection

Patients enrolled in this study have been collected from
three different centers. Patients coming from center #1 were
used for model training (training set-TS) and patients
coming from the centers #2 and #3 for model external
validation (verification set-VS1 and VS2). Patients
enrollment criteria were: (1) pathologically proven
LARC, without distant metastases at diagnosis; (2) a pelvic
MR staging study with good image quality (absence
of macroscopic artifacts due, for example, to hip
prostheses); (3) age at diagnosis time greater than 18 years;
(4) availability of tumor regression grade (TRG) (13)
classification in the pathologic report; (5) signed informed
consent for retrospective data collection. The same criteria
were used for collecting patients in the second and third
centers and building the VSs. For VS1 patients were
recruited in retrospective fashion, for VS2 patients belong
to THUNDER trial (15) (NCT 00969657) for which
patients had provided consent for MR images analysis.
Data in TS were collected retrospectively from May 2008
to December 2014.

Staging, MR imaging technique, and delineation of
gross tumor volume (GTV)

Before CRT treatment, patients recruited in the TS were
staged by using an MR 1.5 T unit (GE Signa Excite, Medical
Systems), according to a protocol (10) that comprises
T2-weighted fast spin-echo 2D oblique images (Table E1;
available online at https://doi.org/10.1016/j.ijrobp.2018.04.
065) acquired in a transverse plane orthogonal to the tumor
longitudinal axis. No intravenous contrast medium was
administered. Images were loaded in a radiation therapy
delineation console (Eclipse, Varian Medical System) for the
definition of lesion outline (“GTV” as defined in International
Commission on Radiation Units and Measurements [ICRU]
n. 83 [16]). Patients in VS1 were recruited after local ethical
committee approval of data sharing for external validation
process. Patients in the VS2 were extracted from the list of
THUNDER trial (15) patients who had available MR
diagnostic imaging. The selection of the MR studies has been
conducted by selecting those who had acquisition parameters
close to the range of TS pre-defined protocol and a pixel
spacing value not higher than 0.76 mm regardless of the
scanner brand. The only criterion for the scanner hardware
selection was the magnetic field power (1.5 T). Finally, all
selected patients resulted to be scanned by a Philips Achieva
Nova in center 1 and Siemens Magnetom AVANTO in center
2 (17, 18). Patients population characteristics are summarized
in Table 1. The GTV delineation was assessed by cooperation
of 2 radiation oncologists (ND, CC) and 2 radiologists (BB,
MD) experienced in rectal cancer diagnosis and treatment for
TS and VS2, in VS1 GTV delineation was locally defined by
different experienced radiation oncologist and radiologist
(NDM, FDC). According to the TRG score (10, 13) all
patients were divided in 2 classes: complete responders
(corresponding to TRGZ 1 or pCR) or not (corresponding to
TRG >1).

Imaging radiomics analysis

Images were analyzed using moddicom, an in-house
developed R statistical software package (19). Moddicom
has in charge the complete workflow of features extraction
and images analysis: it creates a data set composed by
records containing arrays of voxel data (one for each
patient) within the borders of delineated GTVs. Images
were filtered using Laplacian of Gaussian (LoG)
convolution kernel filter, a tool chosen in order to decrease
the MRI high frequency signal noise and, at the same time,
reduce the impact of large variations of signal that can be
detected within a single image slice (eg, variation due to
magnetic field irregularities): numerical data were
pre-processed by using the convolution kernel filter
implemented in moddicom and tuned according to the size
of standard deviation (s) in the LoG equation (1); value of
s was set in mm; x and y are the coordinates of pixels
surrounding the central one (on which equation is used to
calculate the convolution):

ð1Þ LoGðx;yÞZ�1
��

ps4
��

1 � ��
x2 þ y2

���
2s4

���

� exp½�ðx2 þ y2Þ=ð2s2Þ�
Features selection process

After image data set completion moddicom has been used
to extract image features. Two types of features were
extracted: (1) geometrical (GTV volume, GTV surface) and
(2) histogram-based features (skewness, kurtosis, and
Shannon entropy), these latter widely used in radiomics
publications in the past (2, 4, 20-22). In moddicom, a
function for scanning every possible s value from 0.2 mm
to 1.4 mm (step 0.01 mm) was created extracting 1200
features analyzed versus final outcome (pCR and not-pCR
patients) by univariate Mann-Whitney test and the area
under the receiver operating characteristic curve (AUC).
P values under .05 were considered significant.

Statistical analysis

R statistical software version 3.3.1 was used for statistical
analysis. Heterogeneity between patient groups (TS vs VS)
was evaluated by Pearson’s c2 test with Yates’ continuity

https://doi.org/10.1016/j.ijrobp.2018.04.065
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Table 1 Patients characteristics and descriptive statistics of variables in Training Set (TS), Verification Set 1 (VS1), and Verification
Set 2 (VS2)

TS (162) VS1 (39)

P values
differences
TS vs VS1 VS 2 (25)

P values
differences
TS vs VS2

Patient characteristics

Age Statistic test Age Statistic test

Median Range Median Range c2 MW Median Range c2 MW

Sex
Male 66.0 28-83 62.0 43-77 - 0.18 66 52-80 - 0.661
Female 61.0 43-80 56.0 35-79 - 0.25 66.4 47-73 - 0.588

Age (overall) 65.0 28-83 60.5 35-79 - 0.14 66 47-80 - 0.963
Interval between MRI-start
chemoradiation

1.4 0-10 0.5 0-2 - <0.01 1.8 0-11 - 0.945

Interval between
Surgery-CRT [mo]

2.6 1-10 2.7 1-5 - 0.9 3 1-9 - 0.942

Clinical features

Number % Number % c2 MW Number % c2 MW

Stage
cT 0.14 - 0.12 -
2 15 9 2 6 1 4
3 95 59 26 76 20 80
4 52 32 6 17 4 16

cN 0.17 - 0.41 -
0 9 5.5 3 9 3 12
1 58 36 17 50 7 28
2 95 59 14 41 15 60

Response 0.47 - 1.0 -
TRG Z 1 46 28 7 21 7 28
TRG > 1 116 72 27 79 18 72

RT dose*

43.8 - - 1 3.0 - - - - - -
45 - - 8 23.5 - - - - - -
46.2 - - 25 73.5 - - - - - -
50.4 143 88 - - - - 25 100 - -
55 19 12 - - - - - - - -

Concomitant CT type - - - -
CAP 45 28 - - 25 100
CAPþOX 114 70 - - - -
FU 3 2 - - - -
OXþFU - - 34 100 - -

Abbreviations: c2 Z Pearson’s c2; CAP Z capecitabin only; CAPþOX Z capecitabin plus oxaliplatin; cN Z clinical N stage;

CRT Z chemoradiation therapy; CT Z chemotherapy; cT Z clinical T stage; MW Z Mann-Whitney; OXþFU Z oxaliplatin þ fluorouracil;

RT Z radiation therapy; TRG Z 1 Z pathologic complete response; TRG > 1 Z pathologic not complete response; TS Z Training Set;

VS1 Z Verification Set 1; VS2 Z Verification Set 2.

* Dose prescription details, doses are referred on GTV.

TS: 50.4 Gy Z 1.8 Gy � 25 fr þ 1.8 � 3 fr; 55 Gy Z 1.8 Gy � 15 fr þ 2.8 � 10 fr;
VS1: 43.8 Gy Z 2.3 Gy � 12 fr þ 2.7 Gy � 6 fr; 45 Gy Z 2.3 Gy � 12 fr þ 2.9 Gy � 6 fr, 46.2 Z 2.3 Gy � 12 fr þ 3.1 Gy � 6 fr;
VS2: 50.4 Gy Z 1.8 � 25 fr þ 1.8 � 3 fr.
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correction for categorical variables and Mann-Whitney test
for numerical ones. A logistic regression model was
computed for modeling the binary outcome (pCR vs
not-pCR) by backward elimination, using the best
univariate analysis performing features, clinical T stage
(cT) and clinical N stage (cN) on TS: 2-tailed P value
corresponding to Z-ratio based on normal distribution was
used for evaluating statistical significance. The correlation
and the co-linearity of the final predictor features were
evaluated by using the linear cross-correlation matrix
(Pearson’s coefficient) and the Variance Inflation Factor
(VIF), respectively. Discrimination power was calculated
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using AUC of ROC of the model, and external validation
was performed on VS. Calibration of the model was
calculated for both TS and VS using Hosmer and
Lemeshow goodness-of-fit (GOF) test: P values < .05
indicate lack of fit of the model. In order to evaluate how
much information the 2 radiomic features added to the cT
in predicting the pCR, the AUC values of the cT model
(trained in the univariate way) and the final model were
compared through the DeLong’s test. Survival analysis was
made by using Kaplan-Meier log-rank test in univariate
analysis and Cox model in multivariate analysis in order to
evaluate the impact of the final predictors on the overall
survival (OS), loco-regional control (LRC), metastases-free
survival (MFS) and disease-free survival (DFS). Moreover,
the impact of TRG on survival outcomes has been
evaluated to assess actual impact of this parameter on
patients’ survival. OS was defined as time from diagnosis
(biopsy) and death or last follow-up (censor), LRC was
defined as time from surgery and loco-regional recurrence
or last follow-up (censor), MFS was defined as time from
surgery and metastasis finding or last follow-up, and DFS
survival was defined as the minor value reported in MFS
or LRC.
Fig. 1. Radiomics workflow: after image acquisition
(1) the gross tumor volume (GTV) is delineated. Voxel
belonging to GTVare extracted in 3D fashion building a 3D
array (2) and afterwards processed by applying Laplacian
of Gaussian filter (LoG - 3). The s parameter of LoG has to
be tuned in order to identify the values that better enhance
the features of the GTV related to outcome prediction.
Results

A total number of 162 patients were selected in the TS;
34 patients were included from center 1 in VS1 and
25 patients were included from center 2 in the VS2 after the
analysis of MR DICOM header. All patients have been
treated by using 3D conformal radiation therapy and
concurrent chemotherapy. Only patients with complete
treatment course have been selected. All histological types
were adenocarcinoma and the median time between CRT,
and surgery was 2.6 months (range 1-10 months). Details of
TS and VSs patients and their treatment features are
summarized in Table 1: no significant differences are
observed in the distribution of clinical characteristics of the
patients and in the proportion of pCR. The overall response
rate (TRG Z 1) was 28% (46/162) in TS, 21% (7/34) in
VS1, and 28% (7/25) in VS2 (not significantly different
among different centers: P value TS-VS1 Z 0.47,
TS-VS2 Z 1.00). The application of LoG filter on raw MR
images produces images that are different from the original
ones, enhancing the short-range differences in pixel
intensities and revealing the texture appearance according to
the s value. An example of application is given in Figure 1,
where it is possible to see how, with increasing the s value of
LoG, the coarseness of MR GTV texture appears greater.
This process produces different values of features calculated
over the total amount of analyzed voxels. And this is the
reason why a features selection process is needed for
browsing through a continuous range of s values and finding
where the Mann-Whitney test returns the most significant
(lowest) P values: these s values correspond to highest AUC
and have been used for extracting the covariates to be put in
the logistic regression model and predicting the final pCR
probability. The most significant features were skewness
with s Z 0.485 mm (SKE0485, P value Z .010) and
entropy with s Z 0.344 mm (ENT0344, P value < .031);
kurtosis didn’t show significant values (Fig. 2). The
multivariate analysis performed by logistic regression
model, putting inside geometrical and IBH features besides
the cT and cN for clinical classification, showed that only
SKE0485, ENT0344, and cT were statistically significant
(see Table 2). The Pearson’s coefficient and the VIF were
<0.4 and <1.2, respectively, showing no linear correlation
and co-linearity among the final predictors (23, 24)
(for additional information see Fig. E2 and Table E2;
available online at https://doi.org/10.1016/j.ijrobp.2018.04.
065). The logistic model has been represented by a nomo-
gram that can be used for calculating the prediction value
starting from known clinical and IBH features achieved for a
single case (Fig. E3; available online at https://doi.org/10.
1016/j.ijrobp.2018.04.065). The discrimination perfor-
mance of the model, evaluated by AUC of the ROC, showed
an AUC Z 0.73 (95% CI 0.65-0.82) (Fig. 3A); the internal
calibration of the model didn’t show significant lack of fit
(GOF test P value Z .77, Fig. 3B). After model tuning the

https://doi.org/10.1016/j.ijrobp.2018.04.065
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Fig. 2. Features selection: the two plots show the process of features selection for radiomics modeling. In the plot A the
univariate AUC is provided, and it can be easily related to the P value of not parametric univariate Mann-Whitney test for
TRG Z 1 versus TRG > 1 discrimination power (B). Only the most significant features (points a and b) in the set have been
chosen for the definition of multivariate logistic model. P Values Z .05 in univariate test (horizontal solid reference line
in plot B) are the threshold level chosen for excluding features from selection. Features: kurtosis (black line), skewness
(blue line), entropy (red line). (A color version of this figure is available at https://doi.org/10.1016/j.ijrobp.2018.04.065.)
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external verification was conducted on VS1 and VS2 sepa-
rately and by merging the 2 data sets: both sets showed
similar AUCs (VS1 AUC Z 0.79, 95% CI 0.55-0.94,
VS2 AUC Z 0.75, 95% CI 0.59-0.98, Fig. 3C) and
Table 2 Result of logistic regression model tuned after
backward elimination on clinical and intensity based
histogram features

Radiomics
modeling results Estimate Std. error z value P value (>jzj)*
cT -0.947 0.3604 -2.628 .0086
cN 0.531 0.3446 1.542 .1232
SKE0485 -3.013 1.17 -2.571 .010
ENT0344 3.610 1.676 2.154 .031
(Intercept) -6.1850 3.003 -1.545 .1224

Abbreviations: cN Z clinical N stage; cT Z clinical T stage;

ENT0344Z entropy with Laplacian of Gaussian filter sZ 0.344 mm;

SKE0485 Z skewness with Laplacian of Gaussian filter

s Z 0.485.mm.

* Bold P values are considered significant and enter in the final

pathologic complete response predictive model.
not significant P value in the GOF test (VS1 P value Z .94,
VS2 P value Z .94, Fig. 3D). The combination of VS1 and
VS2 showed combined AUC Z 0.75 (95% CI 0.61-0.88)
and again not significant P value in GOF test
(P value Z .98). The difference between the 2 AUCs (only
cT vs final model) was recorded as statistically significant
difference (P < .01) (for additional information see Fig. E4;
available online at https://doi.org/10.1016/j.ijrobp.2018.04.
065). The number of events in the TS for survival out-
comes were: death Z 17, local recurrence Z 7, distant
metastases Z 25, overall disease relapse Z 15. Median
follow-up time calculated by Kaplan-Meier estimate is
40.9 months (range 4-83 months). The Kaplan-Meier log-
rank tests between pCR and not-pCR calculated on survival
outcomes give back significant P value for DFS (P
value < .05, hazard-ratio (HR) Z 0.24, 95% CI 0.07-0.79,
Fig. 4A) and MFS (P value Z .05, HR Z 0.28, 95% CI
0.08-0.93 Fig. 4B), an almost not significant P value for
LRC (P value Z .10, HR Z 3.4e-09, 95% CI 0-Inf) (for
additional information see Fig. E5; available online at
https://doi.org/10.1016/j.ijrobp.2018.04.065), and not
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significant impact in OS (P value Z .07, HR Z 0.18, 95%
CI 0.02-1.38, Fig. 4C). Other evaluated covariates (sex, cT,
and cN) didn’t return significant P values in univariate
analysis. Multivariate survival analysis (Cox model) didn’t
give significant values in this cohort of patients for the
chosen covariates (Sex, Age, cT, cN, SKE0485, ENT0344,
chemotherapy regimen, radiation therapy dose, time gap
between end of radiation therapy treatment and surgery).
Discussion

Imaging-based predictive models for rectal cancer have
been published in the past, mostly using PET (25, 26).
Radiomics in MR can return issues that depend from
typical absolute value variations of MR signal recorded in
numerical format inside DICOM files (27) changing
according patients, sequences, acquisition parameters, or
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Fig. 4. (A) Disease-free survival curve in the training set
population: patients are divided in cases showing TRG Z 1
(blue line) and cases showing TRG > 1 (red line). The
log-rank test shows significant result (P value Z .03);
(B) Metastases-free survival curve in the training set
population: patients are divided in cases showing TRG Z 1
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patients are divided in cases showing TRG Z 1 (blue line)
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doesn’t show significant result (P value > .05). (A color
version of this figure is available at https://doi.org/10.1016/
j.ijrobp.2018.04.065.)
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simply time. Furthermore, MR can be affected by several
patterns of noise that can interfere with quantitative
analysis of signal values (28), and heterogeneity of MR
numerical data is a well-known issue for the analysis (29).
The LoG filter has been extensively used in radiomics in
literature, mostly in lung, and using CT images (30-32).
LoG filter has also been used in the analysis of
colon-rectum imaging by CT (4) and in 1 early rectal
cancer radiomics experience based on a 3T MR imaging
(22). LoG filter enhances textural details that characterize
the tumor lesions as shown in Figure 1. Furthermore, it is
straightforward that the use of first order features invariant
for linear transformations overcomes the issue of
inter-patients signal variations that can affect MR
radiomics analysis (see Appendix E1; available online at
https://doi.org/10.1016/j.ijrobp.2018.04.065). The extrac-
tion of features strongly depends on the size of the s value.
In this work the IBH is able to predict the probability of
pCR in patients undergoing to pre-operative CRT treatment
without the need to compare the results of this analysis with
other (posttreatment) imaging data, while previous imaging
based predictive models (even when not strictly radiomics
oriented) were mainly based on pre- and posttreatment
imaging comparison (9, 26, 33). A previous publication
has shown a good predictive power using MR in pathologic
response prediction, using T1/T2, diffusion-weighted-MRI
(DWI), and dynamic-contrast-enhanced (DCE)-MRI (5),
but it used a small patient population (48 patients), and the
model was not externally validated. As in our work, this
paper classified patients using the surrogate outcome of the
pCR, but in our work we furthermore applied an
independent external validation process. This validation
uses 2 different brands of MR scanners (but using similar
protocol and pixel spacing resolution and equal magnetic
field power 1.5T), and the only prerequisite for determining
images comparability was the analysis of data coming from
DICOM tags and related to scanning protocol details. As a
consequence, the level of reliability of the model is granted
of Type 3 (on 4 levels) according to the TRIPOD
classification (34). The reason of this result is to ascribe to
LoG filter use, coupled with features that describe the
shape of the histograms (skewness, entropy), without being
influenced by the absolute values in the histograms
(and MR images) themselves. This process is able to
overcome the inter-patients variations of signals that are
common findings in the numerical analysis of MR images
(35). The pCR is entitled to be a good surrogate endpoint
widely used in the past in order to predict which patients
show a higher risk of recurrence (13, 36, 37). Our work
confirms this finding as shown by significantly lower HR
for local or distant recurrence in patients showing pCR
although not showing direct significant correlation between
IBH parameters and survival outcome and furthermore
demonstrates that the addition of radiomics features added
information to the cT alone in predicting the pCR. This
model has further limitations described hereafter: (1) the
validation sets have been obtained in order to admit as
many as possible patients coming from case series in which
MR protocols for patients staging were different in detail.
This fact leads to obtain small number of patients despite
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requiring to 2 different institutions series: 34 patients from
the first institution and 25 patients from the second one. So,
the first issue of such a model is its applicability outside of
the range of the acquisition protocols described in section 3
of Appendix E1 (available online at https://doi.org/10.1016/
j.ijrobp.2018.04.065). In our opinion this is a common
weak point of all MR-based radiomics models as previously
described in literature (38). (2) Another issue in the
modeling process is given by the GTV delineation process:
in literature, when feasible, examples of automated delin-
eation of regions of interests (ROI) have been proposed
(20), but they are used above all when voxel intensity-based
delineation algorithms allow to shape them (eg, lung),
while, in our knowledge, they lack for anatomic sites and
imaging type like the ones we used in this work. At the
moment TS and VS2 were delineated by the center that
provided the patients in the TS, VS1 was delineated in
another center. There could be a residual operator-based
bias, but looking just at VS1 testing results the predictive
power of this IBH signature seems to overcome such an
issue. (3) The final issue about this model is given by the
lack of significance in survival outcomes for the same IBH
features found significant in predicting pCR, as stated
before: not all patients not showing pCR showed events in
survival outcome despite the consistence of median follow-
up time, so, coupling this factor with the different mathe-
matical approach in computing survival statistics, these
features didn’t show a significant level differently from the
logistic model predicting pCR. In order to encompass this
issue, a further validation approach could be realized by
increasing patient population and observing the impact of
IBH model prediction on survival outcomes themselves.
Conclusion

Radiomics in MR is going to be used day after day for
helping physicians in characterizing prognosis of the
patients. This evidence achieved in LARC confirms
previous smaller case series. This MR-based, vendor-
independent IBH model can be considered the first example
of a model able to predict pCR probability in LARC
patients only using pre-treatment imaging. It is also an
example of a consistent externally validated model, a basic
prerequisite for starting radiomics analysis and driving
similar studies as stated recently by Lambin et al (39).
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35. Jäger F, Balda M, Hornegger J. Correction of intensity

inhomogeneities utilizing histogram-based regularization. 4th Russ

Conf Biomed Eng. 2008:23-27.

36. vanStiphout RGPM, Valentini V, Buijsen J, et al. Nomogram

predicting response after chemoradiotherapy in rectal cancer using

sequential PETCT imaging: A multicentric prospective study with

external validation. Radiother Oncol 2014;113:215-222.

37. Capirci C, Valentini V, Cionini L, et al. Prognostic value of pathologic

complete response after neoadjuvant therapy in locally advanced rectal

cancer: Long-term analysis of 566 ypCR patients. Int J Radiat Oncol

Biol Phys 2008;72:99-107.

38. Larue RT, Defraene G, De Ruysscher D, et al. Quantitative radiomics

studies for tissue characterization: A review of technology and

methodological procedures. Br J Radiol 2017;90:20160665.

39. Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: The bridge

between medical imaging and personalized medicine. Nat Rev Clin

Oncol 2017;12:749-762.

http://refhub.elsevier.com/S0360-3016(18)30743-0/sref21
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref21
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref21
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref22
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref22
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref22
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref22
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref23
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref23
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref24
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref24
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref24
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref25
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref25
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref25
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref25
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref25
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref26
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref26
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref26
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref26
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref27
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref27
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref28
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref28
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref29
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref29
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref29
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref30
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref30
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref31
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref31
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref31
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref32
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref32
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref32
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref32
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref34
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref34
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref34
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref35
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref35
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref35
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref37
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref37
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref37
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref37
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref38
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref38
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref38
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref38
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref39
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref39
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref39
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref41
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref41
http://refhub.elsevier.com/S0360-3016(18)30743-0/sref41

	Magnetic Resonance, Vendor-independent, Intensity Histogram Analysis Predicting Pathologic Complete Response After Radioche ...
	Introduction
	Methods and Materials
	Patients selection
	Staging, MR imaging technique, and delineation of gross tumor volume (GTV)
	Imaging radiomics analysis
	Features selection process
	Statistical analysis

	Results
	Discussion
	Conclusion
	References


