Inconspicuous offender

Citation for published version (APA):


Document status and date:
Published: 01/01/2020

DOI:
10.26481/dis.20200929ab

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 22 Oct. 2020
Summary

The main focus of this thesis was to elucidate the role of oxidized lipids with a primary focus on oxLDL in the pathophysiology of metabolic diseases such as NASH, NPC1 and cancer. A variety of in vitro, in vivo and clinical study methods were employed to assess the disease progression markers affected by oxLDL or derivatives thereof such as inflammation, metabolism and response to treatment. In addition, we also sought to validate the use of antibodies against oxLDL as a promising readily-available therapeutic tool to prevent the detrimental effects of oxLDL in cancer.

Chapter 1 provides a global overview of lipids, in particular oxidized lipids, lysosomal enzymes such as cathepsin D and the role they play in metabolic diseases.

Chapter 2 explores the direct effects of oxLDL on the inflammatory status of macrophages, which are thought to be the main drivers of inflammation in diseases featuring dyslipidemia, as well as verifying the ability of anti-oxLDL antibodies to prevent these effects. Here oxLDL was found to contribute to lysosomal lipid-induced hepatic inflammation and increasing anti-oxLDL IgM autoantibodies ameliorates oxLDL induced inflammation in vitro.

Chapter 3 evaluates the effects of CTSD inhibition on the oxLDL mediated modulation of inflammation in macrophages in order to explore its therapeutic viability. The findings demonstrated that inhibition of the proteolytic function of the lysosomal enzyme CTSD reduced inflammation in oxLDL-loaded BMDMs.

Chapter 4 covers a novel attribute of an oxidized lipid (27-hydroxycholesterol) with promising lipid lowering therapeutic potential that shows different effects in men versus women. Here it was observed that cholesterol derivative 27HC affects inflammation differently in males versus females. These differences between males and females are thought to be due to inherent differential expression patterns of the estrogen receptor subtypes between the two sexes.

Chapter 5 Reveals the current state of our general understanding of the effects of oxLDL in cancer.

Chapter 6 aimed to further elucidate the metabolic effects of oxLDL in cancer. Here it was found that oxLDL caused a metabolic shift towards glycolysis, stabilized HIF1-a under normoxic conditions and induced autophagy in pancreatic cancer cell line KLM-1. In addition, anti-oxLDL antibodies prevented the oxLDL mediated activation of HIF1-a and autophagy.

Chapter 7 showcases preliminary results of an ongoing in vivo experiment which looked into the effects of pneumococcal immunization in a NASH-HCC mice model. Here it was uncovered that anti-oxLDL immunization using heat-inactivated pneumococci reduces tumor burden and growth rate in murine NASH-derived HCC.
Appendices

Finally, chapter 8 discusses the overall conclusions of this thesis and addresses open questions that can be further investigated in future research in this context.